HomeWork20252d

HomePage | Memberswill go by tor | RecentChanges | Join |

Let b=0,1b =0,1 then

H(b)=12 x=0,1(1) bxxH({b}\rangle) = \frac{1}{\sqrt{2}} \sum_{x=0,1} {(-1)^{b x} {x}\rangle}

Initially nn qbit 00{0 \cdots 0 }\rangle

Apply HHH \otimes \cdots \otimes H to nn qbit

H(0)H(0)=(12 b 1=0,1b 1)(12 b n=0,1b n)=12 n2 b 1,,b n{0,1}b 1b nH({0}\rangle) \otimes \cdots \otimes H({0}\rangle) = \left(\frac{1}{\sqrt{2}} \sum_{b_1 = 0,1} {b_1}\rangle \right) \otimes \cdots \otimes \left(\frac{1}{\sqrt{2}} \sum_{b_n =0,1} {b_n}\rangle \right)=\frac{1}{2^{\frac{n}{2}}}\sum_{b_1, \cdots, b_n \in \{0,1\}} {b_1 \cdots b_n}\rangle

Apply O fO_f

O f(12 n2 b 1,,b n{0,1}b 1b n)=12 n2 b 1,,b n{0,1}O f(b 1b n)=12 n2 b 1,,b n{0,1}(1) f(b 1b n)b 1b nO_f\left(\frac{1}{2^{\frac{n}{2}}} \sum_{b_1,\cdots,b_n \in \{0,1\}} {b_1 \cdots b_n}\rangle \right)= \frac{1}{2^{\frac{n}{2}}} \sum_{b_1,\cdots,b_n \in \{0,1\}} O_f\left({b_1 \cdots b_n}\rangle \right)= \frac{1}{2^{\frac{n}{2}}} \sum_{b_1,\cdots,b_n \in \{0,1\}} (-1)^{f(b_1 \cdots b_n)} {b_1 \cdots b_n}\rangle

Apply HHH \otimes \cdots \otimes H to nn qbit

12 n2 b 1,,b n{0,1}(1) f(b 1b n)H(b 1)H(b n) =12 n2 b 1,,b n{0,1}(1) f(b 1b n)(12 x 1=0,1(1) b 1x 1x 1)(12 x n=0,1(1) b nx nx n) =12 n b1,,b n=0,1 x 1,,x n=0,1(1) f(b 1b n)(1) b 1x 1(1) b nx nx 1x n =12 n x1,,x n=0,1 b 1,,b n=0,1(1) f(b 1b n)(1) b 1x 1(1) b nx nx 1x n\begin{aligned}&\frac{1}{2^{\frac{n}{2}}} \sum_{b_1,\cdots,b_n \in \{0,1\}} (-1)^{f(b_1 \cdots b_n)} H({b_1}\rangle) \otimes \cdots \otimes H({b_n}\rangle)\\&=\frac{1}{2^{\frac{n}{2}}} \sum_{b_1,\cdots,b_n \in \{0,1\}} (-1)^{f(b_1 \cdots b_n)} \left(\frac{1}{\sqrt{2}} \sum_{x_1=0,1} (-1)^{b_1 x_1} {x_1}\rangle \right) \otimes \cdots \otimes \left(\frac{1}{\sqrt{2}} \sum_{x_n=0,1} (-1)^{b_n x_n} {x_n}\rangle \right)\\&=\frac{1}{2^n} \sum_{b1,\cdots,b_n=0,1} \sum_{x_1,\cdots,x_n=0,1} (-1)^{f(b_1 \cdots b_n)} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&=\frac{1}{2^n} \sum_{x1,\cdots,x_n=0,1} \sum_{b_1,\cdots,b_n=0,1} (-1)^{f(b_1 \cdots b_n)} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle \end{aligned}

If ff is constant 0,

12 n x1,,x n=0,1 b 1,,b n=0,1(1) f(b 1b n)(1) b 1x 1(1) b nx nx 1x n =12 n x1,,x n=0,1 b 1,,b n=0,1(1) b 1x 1(1) b nx nx 1x n\begin{aligned}&\frac{1}{2^n} \sum_{x1,\cdots,x_n=0,1} \sum_{b_1,\cdots,b_n=0,1} (-1)^{f(b_1 \cdots b_n)} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&= \frac{1}{2^n} \sum_{x1,\cdots,x_n=0,1} \sum_{b_1,\cdots,b_n=0,1} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle \end{aligned}

The quantum prob of x 1x n{x_1 \cdots x_n}\rangle is

12 n b 1,,b n=0,1(1) b 1x 1(1) b nx n\frac{1}{2^n} \sum_{b_1,\cdots,b_n= 0 , 1} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n}

If some x k=1x_k = 1

b 1,,b n=0,1(1) b 1x 1(1) b nx nx 1x n = b 1,,b k1,b k+1,b n=0,1 b k=0,1(1) b 1x 1(1) b kx k(1) b nx nx 1x n = b 1,,b k1,b k+1,b n=0,1 b k=0,1(1) b 1x 1(1) b k(1) b nx nx 1x n = b 1,,b k1,b k+1,b n=0,1(1) b 1x 1(1+(1))(1) b nx nx 1x n = b 1,,b k1,b k+1,b n=0,1(1) b 1x 10(1) b nx nx 1x n =0\begin{aligned}&\sum_{b_1,\cdots,b_n=0,1} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&=\sum_{b_1, \cdots, b_{k-1}, b_{k+1}, \cdots b_n=0,1} \sum_{b_k=0,1} (-1)^{b_1 x_1} \cdots (-1)^{b_k x_k} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&=\sum_{b_1, \cdots, b_{k-1}, b_{k+1}, \cdots b_n=0,1} \sum_{b_k=0,1} (-1)^{b_1 x_1} \cdots (-1)^{b_k} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&=\sum_{b_1, \cdots, b_{k-1}, b_{k+1}, \cdots b_n=0,1} (-1)^{b_1 x_1} \cdots \left(1+(-1)\right) \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&=\sum_{b_1, \cdots, b_{k-1}, b_{k+1}, \cdots b_n=0,1} (-1)^{b_1 x_1} \cdots 0 \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle \\&=0\end{aligned}

Therefore

12 n x 1,,x n=0,1 b 1,,b n=0,1(1) b 1x 1(1) b nx nx 1x n =12 n b 1,,b n=0,1(1) 0(1) 000 =12 n b 1,,b n=0,100 =00\begin{aligned}&\frac{1}{2^n} \sum_{x_1,\cdots,x_n=0,1} \sum_{b_1,\cdots,b_n=0,1} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle \\&= \frac{1}{2^n} \sum_{b_1,\cdots,b_n =0,1} (-1)^0 \cdots (- 1)^0 {0 \cdots 0}\rangle \\&= \frac{1}{2^n} \sum_{b_1,\cdots,b_n=0,1} {0 \cdots 0}\rangle \\&= {0 \cdots 0}\rangle\end{aligned}

Similarly if ff is constant 1,

12 n x 1,,x n=0,1 b 1,,b n=0,1(1) f(b 1b n)(1) b 1x 1(1) b nx nx 1x n=00\frac{1}{2^n} \sum_{x_1,\cdots,x_n=0,1} \sum_{b_1,\cdots,b_n=0,1} (-1)^{f(b_1 \cdots b_n)} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle = -{0 \cdots 0}\rangle

So if ff is constant then 00{0 \cdots 0}\rangle is 100% possibility

Let AA be the set of b 1b n{b_1 \cdots b_n}\rangle whose ff is 0. Let BB be the set of b 1b n{b_1 \cdots b_n}\rangle whose ff is 1

12 n x 1,,x n=0,1 b 1,,b n=0,1(1) f(b 1b n)(1) b 1x 1(1) b nx nx 1x n =12 n( x 1,,x n=0,1 (b 1,,b n)A(1) b 1x 1(1) b nx nx 1x n x 1,,x n=0,1 (b 1,,b n)B(1) b 1x 1(1) b nx nx 1x n)\begin{aligned}&\frac{1}{2^n} \sum_{x_1,\cdots,x_n=0,1} \sum_{b_1,\cdots,b_n=0,1} (-1)^{f(b_1 \cdots b_n)} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle\\&= \frac{1}{2^n} \left( \sum_{x_1,\cdots,x_n=0,1} \sum_{(b_1, \cdots, b_n) \in A} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle - \sum_{x_1,\cdots,x_n=0,1} \sum_{(b_1, \cdots, b_n) \in B} (-1)^{b_1 x_1} \cdots (-1)^{b_n x_n} {x_1 \cdots x_n}\rangle \right)\end{aligned}

Let Count(A)Count(A), Count(B)Count(B) mean the size of the set AA and BB therefore Count(A)+Count(B)=2 nCount(A)+Count(B) = 2^n . The coefficient of 00{0 \cdots 0}\rangle is

12 n( (b 1,,b n)A(1) b 10(1) b n000 (b 1,,b n)B(1) b 10(1) b n000) =12 n( (b1,,b n)A00 (b1,,b n)B00) =12 n(Count(A)00Count(B)00) =Count(A)Count(B)2 n00\begin{aligned}&\frac{1}{2^n} \left( \sum_{(b_1, \cdots, b_n) \in A} (-1)^{b_1 \cdot 0} \cdots (-1)^{b_n \cdot 0} {0 \cdots 0}\rangle - \sum_{(b_1, \cdots, b_n) \in B} (-1)^{b_1 \cdot 0} \cdots (-1)^{b_n \cdot 0} {0 \cdots 0}\rangle \right)\\&=\frac{1}{2^n} \left( \sum_{(b1,\cdots,b_n)\in A} {0 \cdots 0}\rangle-\sum_{(b1,\cdots,b_n)\in B} {0 \cdots 0}\rangle \right)\\&=\frac{1}{2^n} \left( Count(A) {0 \cdots 0}\rangle - Count(B) {0 \cdots 0}\rangle\right)\\&=\frac{Count(A)-Count(B)}{2^n} {0 \cdots 0}\rangle\end{aligned}

So if ff is balance then the coefficient of 00{0 \cdots 0}\rangle is 0 aka 0% possibility