HomeWork20260109

HomePage | Memberswill go by tor | RecentChanges | Join |

(1)

[1λ 1 0 1 2λ 1 0 1 1λ] [0 1+23λ+λ 2 λ1 1 2λ 1 0 1 1λ] [λ 23λ+1 λ1 1 1λ] (λ1)[λ 23λ+1 1 1 1] (λ1)(λ 23λ)=λ(λ1)(λ3)\begin{aligned}&\begin{bmatrix}1-\lambda&-1&0\\-1&2-\lambda&-1\\0&-1&1-\lambda\end{bmatrix}\\ &\sim \begin{bmatrix}0&-1+2-3\lambda+\lambda^2&\lambda-1\\-1&2-\lambda&-1\\0&-1&1-\lambda\end{bmatrix} \\&\sim\begin{bmatrix}\lambda^2-3\lambda+1&\lambda-1\\-1&1-\lambda\end{bmatrix}\\&\sim(\lambda-1)\begin{bmatrix}\lambda^2-3\lambda+1&1\\-1&-1\end{bmatrix}\\&\sim(\lambda-1)(\lambda^2-3\lambda)=\lambda(\lambda-1)(\lambda-3)\end{aligned}

λ 1=0 [1 1 0 1 2 1 0 1 1][x y z] [1 1 0 0 1 1 0 1 1] [1 0 1 0 1 1 0 0 0] v 1=[1 1 1]\begin{aligned}\lambda_1=0\\\begin{bmatrix}1&-1&0\\-1&2&-1\\0&-1&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}\\ \sim \begin{bmatrix}1&-1&0\\0&1&-1\\0&-1&1\end{bmatrix} \\ \sim \begin{bmatrix}1&0&-1\\0&1&-1\\0&0&0\end{bmatrix}\\v_1=\begin{bmatrix}1\\1\\1\end{bmatrix}\end{aligned}

λ 2=1 [0 1 0 1 1 1 0 1 0] [0 1 0 1 0 1 0 0 0] v 2=[1 0 1]\begin{aligned}\lambda_2=1\\\begin{bmatrix}0&-1&0\\-1&1&-1\\0&-1&0\end{bmatrix}\\ \sim \begin{bmatrix}0&-1&0\\-1&0&-1\\0&0&0\end{bmatrix}\\v_2=\begin{bmatrix}1\\0\\-1\end{bmatrix}\end{aligned}

λ 3=3 [2 1 0 1 1 1 0 1 2] [2 0 2 1 0 1 0 1 2] [0 0 0 1 0 1 0 1 2] v 3=[1 2 1]\begin{aligned}\lambda_3=3\\\begin{bmatrix}-2&-1&0\\-1&-1&-1\\0&-1&-2\end{bmatrix}\\\sim\begin{bmatrix}-2&0&2\\-1&0&1\\0&-1&-2\end{bmatrix}\\\sim\begin{bmatrix}0&0&0\\-1&0&-1\\0&-1&-2\end{bmatrix}\\v_3=\begin{bmatrix}-1\\-2\\1\end{bmatrix}\end{aligned}

A[v 1 v 2 v 3]=[v 1 v 2 v 3][λ 1 0 0 0 λ 2 0 0 0 λ 3] V[v 1 v 2 v 3]=[1 1 1 1 0 2 1 1 1] A=V[λ 1 0 0 0 λ 2 0 0 0 λ 3]V 1\begin{aligned}A \begin{bmatrix}v_1&v_2&v_3\end{bmatrix}=\begin{bmatrix}v_1&v_2&v_3\end{bmatrix} \begin{bmatrix}\lambda_1&0&0\\0&\lambda_2&0\\0&0&\lambda_3\end{bmatrix}\\V \equiv \begin{bmatrix}v_1&v_2&v_3\end{bmatrix}=\begin{bmatrix}1&1&-1\\1&0&-2\\1&-1&1\end{bmatrix}\\A=V \begin{bmatrix}\lambda_1&0&0\\0&\lambda_2&0\\0&0&\lambda_3\end{bmatrix} V^{-1}\end{aligned}

note. if distinct eigenvalues, eigenvectors must be independent. Say, λ 1\lambda_1 is the eigenvalue of max absolute value

v 1= i>1a iv i v 1= i>1a iλ iλ 1v i\begin{aligned}v_1=\sum_{i>1} a_i v_i\\v_1=\sum_{i>1} a_i \frac{\lambda_i}{\lambda_1} v_i\end{aligned}

Apply infinite times 1λ 1A\frac{1}{\lambda_1}A, then v 1=0v_1=0. contradiction to non-zero eigenvector.

(a)

A k=V[λ 1 k 0 0 0 λ 2 k 0 0 0 λ 3 k]V 1 poly(A)=V[poly(λ 1) 0 0 0 poly(λ 2) 0 0 0 poly(λ 3)]V 1\begin{aligned}A^k=V \begin{bmatrix}\lambda_1^k&0&0\\0&\lambda_2^k&0\\0&0&\lambda_3^k\end{bmatrix} V^{-1}\\ poly(A)=V \begin{bmatrix}poly(\lambda_1)&0&0\\0&poly(\lambda_2)&0\\0&0&poly(\lambda_3)\end{bmatrix} V^{-1}\end{aligned}

Therefore A 3A^3 has also eigenvectors v 1,v 2,v 3v_1,v_2,v_3 with eigenvalues 0,1,270,1,27, A+10IA+10I has eigenvectors v 1,v 2,v 3v_1,v_2,v_3 with eigenvalues 10,11,1310,11,13

(b)

A T=(V 1) T[λ 1 0 0 0 λ 2 0 0 0 λ 3]V TA^T=(V^{-1})^T \begin{bmatrix}\lambda_1&0&0\\0&\lambda_2&0\\0&0&\lambda_3\end{bmatrix} V^T so eigenvectors are columns of (V 1) T(V^{-1})^T with the same eigenvalues

(c)

yes

(d)

not invertible. if invertible, then 1λ\frac{1}{\lambda} are the eigenvalues

(e)

if one of the eigenvalue is 0, not invertible

(2)

(a)

A=[1 0 0 1]A=\begin{bmatrix}1&0\\0&1\end{bmatrix}

(b)

A=[1 0 1 1]A=\begin{bmatrix}1&0\\1&1\end{bmatrix}

(c)

(1)'s A

(d)

A=[0 0 1 0]A=\begin{bmatrix}0&0\\1&0\end{bmatrix}

No special relation

(3)

(a)

no. (2)'s (d) is an example

(b)

put two different invertible B and set C=[0 0 0 1]C=\begin{bmatrix}0&0\\0&1\end{bmatrix}

(c)

[0 0 1 0]\begin{bmatrix}0&0\\1&0\end{bmatrix} and [0 0 2 0]\begin{bmatrix}0&0\\2&0\end{bmatrix} can not be similar

B[0 0 1 0]=[b 12 0 b 22 0]B\begin{bmatrix}0&0\\1&0\end{bmatrix}=\begin{bmatrix}b_{12}&0\\b_{22}&0\end{bmatrix}

[0 0 2 0]B=[0 0 2b 21 2b 22]\begin{bmatrix}0&0\\2&0\end{bmatrix} B=\begin{bmatrix}0&0\\2b_{21}&2b_{22}\end{bmatrix}

So B=[b 11 0 0 0]B=\begin{bmatrix}b_{11}&0\\0&0\end{bmatrix} not invertible

(d)

yes. by the note in (1), A=UΛU 1,C=VΛV 1A=U \Lambda U^{-1}, C=V \Lambda V^{-1} then C=(VU 1)A(VU 1) 1C=(V U^{-1})A (V U^{-1})^{-1}

(4)

(a)

Au 1=u 10,Au 2=u 25A u_1= u_1 \cdot 0, A u_2=u_2 \cdot 5

(b)

U=[u 1, u 2]=[2 1 1 2],Λ=[0 0 0 5],A=UΛU 1U=\begin{bmatrix}u_1,&u_2\end{bmatrix}=\begin{bmatrix}2&1\\-1&2\end{bmatrix},\Lambda=\begin{bmatrix}0&0\\0&5\end{bmatrix},A=U \Lambda U^{-1}

u 11+u 21=U[1 1]=[3 0]u_1 \cdot 1 + u_2 \cdot 1 = U \begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}3\\0\end{bmatrix} u 10+u 25=U[0 5]=[5 10]u_1 \cdot 0 + u_2 \cdot 5 = U \begin{bmatrix}0\\5\end{bmatrix}=\begin{bmatrix}5\\10\end{bmatrix}

(e)

segment vector of u iu_i direction times λ i\lambda_i