HowToSolveK

HomePage | Memberswill go by tor | RecentChanges | Join |

How to solve 0 T 0 TK(x,y)dz xdz y\int_{0}^{T} \int_{0}^{T} K(x, y) d z_{x} d z_{y}

簡單的情形

如果 K(x,y)K(x, y) 是這種 form if i(x)g i(y)\sum_{i} f_{i}(x) \cdot g_{i}(y) ,則

0 T 0 TK(x,y)dz xdz y = i 0 T 0 Tf i(x)g i(y)dz xdz y = i 0 Tf i(x)dz x 0 Tg i(y)dz y =μ+ i( 0 Tf i(x)dz x 0 Tg i(y)dz y 0 Tf i(s)g i(s)ds) μ 0 TK(s,s)ds= i 0 Tf i(s)g i(s)ds\begin{aligned}& \int_{0}^{T} \int_{0}^{T} K(x, y) d z_{x} d z_{y} \\& =\sum_{i} \int_{0}^{T} \int_{0}^{T} f_{i}(x) g_{i}(y) d z_{x} d z_{y} \\& =\sum_{i} \int_{0}^{T} f_{i}(x) d z_{x} \int_{0}^{T} g_{i}(y) d z_{y} \\& =\mu+\sum_{i}\left(\int_{0}^{T} f_{i}(x) d z_{x} \int_{0}^{T} g_{i}(y) d z_{y}-\int_{0}^{T} f_{i}(s) g_{i}(s) d s\right) \\& \mu \equiv \int_{0}^{T} K(s, s) d s=\sum_{i} \int_{0}^{T} f_{i}(s) g_{i}(s) d s\end{aligned}

為一堆有相關性的 normal random variable 相乘再相加。如果 f i(x)f_{i}(x)g i(x)g_{i}(x) 一樣,這樣計算積分或模擬機率變數就可以少一半。

如果 K(x,y)K(x, y) 不是這種好用的 form ,就用這種好用的 form 去逼近。

誤差控制

NN 項計算的答案誤差的機率變數為:

i>N( 0 Tf i(x)dz x 0 Tg i(y)dz y 0 Tf i(s)g i(s)ds)\sum_{i>N}\left(\int_{0}^{T} f_{i}(x) d z_{x} \int_{0}^{T} g_{i}(y) d z_{y}-\int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)

它的期望值為零。它的變異數為

E(( i>N( 0 Tf i(x)dz x 0 Tg i(y)dz y 0 Tf i(s)g i(s)ds)) 2) = i>N,j>NE( 0 T 0 T 0 T 0 Tf i(x 1)g i(x 2)f j(x 3)g j(x 4)dz x 1dz x 2dz x 3dz x 4) 2 i>N,j>NE( 0 Tf i(x)dz x 0 Tg i(y)dz y) 0 Tf j(s)g j(s)ds+ i>N,j>N( 0 Tf i(s)g i(s)ds)( 0 Tf j(s)g j(s)ds) = i>N,j>NE( 0 T 0 T 0 T 0 Tf i(x 1)g i(x 2)f j(x 3)g j(x 4)dz x 1dz x 2dz x 3dz x 4)( i>N 0 Tf i(s)g i(s)ds) 2\begin{aligned}& E\left(\left(\sum_{i>N}\left(\int_{0}^{T} f_{i}(x) d z_{x} \int_{0}^{T} g_{i}(y) d z_{y}-\int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)\right)^{2}\right) \\& =\sum_{i>N, j>N} E\left(\int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} f_{i}\left(x_{1}\right) g_{i}\left(x_{2}\right) f_{j}\left(x_{3}\right) g_{j}\left(x_{4}\right) d z_{x_{1}} d z_{x_{2}} d z_{x_{3}} d z_{x_{4}}\right) \\& -2 \sum_{i>N, j>N} E\left(\int_{0}^{T} f_{i}(x) d z_{x} \int_{0}^{T} g_{i}(y) d z_{y}\right) \int_{0}^{T} f_{j}(s) g_{j}(s) d s+\sum_{i>N, j>N}\left(\int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)\left(\int_{0}^{T} f_{j}(s) g_{j}(s) d s\right) \\& =\sum_{i>N, j>N} E\left(\int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} f_{i}\left(x_{1}\right) g_{i}\left(x_{2}\right) f_{j}\left(x_{3}\right) g_{j}\left(x_{4}\right) d z_{x_{1}} d z_{x_{2}} d z_{x_{3}} d z_{x_{4}}\right)-\left(\sum_{i>N} \int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)^{2}\end{aligned}

summation 裡面第一項期望值不是零的項只有當 x 1=x 2,x 3=x 4x_{1}=x_{2},x_{3}=x_{4}x 1=x 3,x 2=x 4x_{1}=x_{3}, x_{2}=x_{4}x 1=x 4,x 2=x 3x_{1}=x_{4}, x_{2}=x_{3}等於:

0 T 0 Tf i(x 2)g i(x 2)f j(x 4)g j(x 4)dx 2dx 4+ 0 T 0 Tf i(x 3)g i(x 4)f j(x 3)g j(x 4)dx 3dx 4+ 0 T 0 Tf i(x 4)g i(x 3)f j(x 3)g j(x 4)dx 3dx 4 =( 0 Tf i(s)g i(s)ds)( 0 Tf j(s)g j(s)ds)+( 0 Tf i(s)f j(s)ds)( 0 Tg i(s)g j(s)ds)+( 0 Tf i(s)g j(s)ds)( 0 Tf j(s)g i(s)ds)\begin{aligned}& \int_{0}^{T} \int_{0}^{T} f_{i}\left(x_{2}\right) g_{i}\left(x_{2}\right) f_{j}\left(x_{4}\right) g_{j}\left(x_{4}\right) d x_{2} d x_{4} +\int_{0}^{T} \int_{0}^{T} f_{i}\left(x_{3}\right) g_{i}\left(x_{4}\right) f_{j}\left(x_{3}\right) g_{j}\left(x_{4}\right) d x_{3} d x_{4} +\int_{0}^{T} \int_{0}^{T} f_{i}\left(x_{4}\right) g_{i}\left(x_{3}\right) f_{j}\left(x_{3}\right) g_{j}\left(x_{4}\right) d x_{3} d x_{4} \\& =\left(\int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)\left(\int_{0}^{T} f_{j}(s) g_{j}(s) d s\right)+\left(\int_{0}^{T} f_{i}(s) f_{j}(s) d s\right)\left(\int_{0}^{T} g_{i}(s) g_{j}(s) d s\right)+\left(\int_{0}^{T} f_{i}(s) g_{j}(s) d s\right)\left(\int_{0}^{T} f_{j}(s) g_{i}(s) d s\right)\end{aligned}

所以誤差機率變數的變異數為 :

i>N,j>N( 0 Tf i(s)g i(s)ds)( 0 Tf j(s)g j(s)ds) + i>N,j>N( 0 Tf i(s)f j(s)ds 0 Tg i(s)g j(s)ds+ 0 Tf i(s)g j(s)ds 0 Tf j(s)g i(s)ds) ( i>N 0 Tf i(s)g i(s)ds) 2 = i>N,j>N( 0 Tf i(s)f j(s)ds 0 Tg i(s)g j(s)ds+ 0 Tf i(s)g j(s)ds 0 Tf j(s)g i(s)ds)\begin{aligned}& \sum_{i>N, j>N}\left(\int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)\left(\int_{0}^{T} f_{j}(s) g_{j}(s) d s\right) \\+ & \sum_{i>N, j>N}\left(\int_{0}^{T} f_{i}(s) f_{j}(s) d s \cdot \int_{0}^{T} g_{i}(s) g_{j}(s) d s+\int_{0}^{T} f_{i}(s) g_{j}(s) d s \cdot \int_{0}^{T} f_{j}(s) g_{i}(s) d s\right) \\- & \left(\sum_{i>N} \int_{0}^{T} f_{i}(s) g_{i}(s) d s\right)^{2} \\= & \sum_{i>N, j>N}\left(\int_{0}^{T} f_{i}(s) f_{j}(s) d s \cdot \int_{0}^{T} g_{i}(s) g_{j}(s) d s+\int_{0}^{T} f_{i}(s) g_{j}(s) d s \cdot \int_{0}^{T} f_{j}(s) g_{i}(s) d s\right)\end{aligned}

η i\eta_{i} 表示 0 Tf i(s) 2ds\sqrt{\int_{0}^{T} f_{i}(s)^{2} d s} 0 Tg i(s) 2ds\sqrt{\int_{0}^{T} g_{i}(s)^{2} d s} 的 upper bound,通常 η i\eta_{i} 為一個隨著 ii 迅速遞減的數列,則:

| i>N,j>N( 0 Tf i(s)f j(s)ds 0 Tg i(s)g j(s)ds+ 0 Tf i(s)g j(s)ds 0 Tf j(s)g i(s)ds)| i>N,j>N| 0 Tf i(s)f j(s)ds 0 Tg i(s)g j(s)ds|+| 0 Tf i(s)g j(s)ds 0 Tf j(s)g i(s)ds| i>N,j>N 0 Tf i(s) 2ds 0 Tf j(s) 2ds 0 Tg i(s) 2ds 0 Tg j(s) 2ds+ 0 Tf i(s) 2ds 0 Tg j(s) 2ds 0 Tf j(s) 2ds 0 Tg i(s) 2ds i>N,j>Nη iη jη iη j+η iη jη jη i=2 i>N,j>Nη i 2η j 2=2( i>Nη i 2) 2\begin{aligned}& \left| \sum_{i>N, j>N}\left(\int_{0}^{T} f_{i}(s) f_{j}(s) d s \cdot \int_{0}^{T} g_{i}(s) g_{j}(s) d s+\int_{0}^{T} f_{i}(s) g_{j}(s) d s \cdot \int_{0}^{T} f_{j}(s) g_{i}(s) d s\right) \right| \\& \leq \sum_{i>N, j>N}\left|\int_{0}^{T} f_{i}(s) f_{j}(s) d s \cdot \int_{0}^{T} g_{i}(s) g_{j}(s) d s\right| + \left|\int_{0}^{T} f_{i}(s) g_{j}(s) d s \cdot \int_{0}^{T} f_{j}(s) g_{i}(s) d s \right| \\& \leq \sum_{i>N, j>N} \sqrt{\int_{0}^{T} f_{i}(s)^{2} d s} \sqrt{\int_{0}^{T} f_{j}(s)^{2} d s} \sqrt{\int_{0}^{T} g_{i}(s)^{2} d s} \sqrt{\int_{0}^{T} g_{j}(s)^{2} d s}+\sqrt{\int_{0}^{T} f_{i}(s)^{2} d s} \sqrt{\int_{0}^{T} g_{j}(s)^{2} d s} \sqrt{\int_{0}^{T} f_{j}(s)^{2} d s} \sqrt{\int_{0}^{T} g_{i}(s)^{2} d s} \\& \leq \sum_{i>N, j>N} \eta_{i} \eta_{j} \eta_{i} \eta_{j}+\eta_{i} \eta_{j} \eta_{j} \eta_{i}=2 \sum_{i>N, j>N} \eta_{i}^{2} \eta_{j}^{2}=2\left(\sum_{i>N} \eta_{i}^2\right)^{2}\end{aligned}

所以只要要求 NN 滿足 2 i>Nη i 2ε\sqrt{2} \sum_{i>N} \eta_{i}^{2} \leq \epsilon ,就可以做到誤差的標準差小於 ε\epsilon

例子

計算和模擬 0 T 0 Te β|xy|dz xdz y\int_{0}^{T} \int_{0}^{T} e^{-\beta|x-y|} d z_{x} d z_{y} 因為我們只在乎 TaT-T \leq a \leq T 的行為,所以把 e β|a|e^{-\beta|a|} 想成一個週期為 2T2 TTaT-T \leq a \leq T 所展開的函數。又因為它是偶函數,所以傅立葉展開為 e β|a|=12a 0+ na ncos(nωa)e^{-\beta|a|}=\frac{1}{2} a_{0}+\sum_{n} a_{n} \cos (n \omega a) 其中 ω=πT\omega=\frac{\pi}{T}

a 0=1T T Te β|a|da=2T 0 Te βada=2(1e βT)βT a n=1T T Te β|a|cos(nωa)da=2T 0 Te βacos(nωa)da =2Tβe βT(βcos(nωT)nωsin(nωT))β 2+n 2ω 2=2β(1+e βT(1) n+1)(β 2+n 2ω 2)T\begin{aligned}& a_{0}=\frac{1}{T} \int_{-T}^{T} e^{-\beta|a|} d a=\frac{2}{T} \int_{0}^{T} e^{-\beta a} d a=\frac{2\left(1-e^{-\beta T}\right)}{\beta T} \\& a_{n}=\frac{1}{T} \int_{-T}^{T} e^{-\beta|a|} \cos (n \omega a) d a=\frac{2}{T} \int_{0}^{T} e^{-\beta a} \cos (n \omega a) d a \\& =\frac{2}{T} \cdot \frac{\beta-e^{-\beta T}(\beta \cos (n \omega T)-n \omega \sin (n \omega T))}{\beta^{2}+n^{2} \omega^{2}}=\frac{2 \beta\left(1+e^{-\beta T}(-1)^{n+1}\right)}{\left(\beta^{2}+n^{2} \omega^{2}\right) T}\end{aligned}

所以

μ=T e β|xy|=12a 0+ na ncos(nω(xy)) =12a 0+ na n(cos(nωx)cos(nωy)+sin(nωx)sin(nωy)) =12a 0+ na ncos(nωx)cos(nωy)+ na nsin(nωx)sin(nωy)\begin{aligned}& \mu=T \\& e^{-\beta|x-y|}=\frac{1}{2} a_{0}+\sum_{n} a_{n} \cos (n \omega(x-y)) \\& =\frac{1}{2} a_{0}+\sum_{n} a_{n}(\cos (n \omega x) \cos (n \omega y)+\sin (n \omega x) \sin (n \omega y)) \\& =\frac{1}{2} a_{0}+\sum_{n} a_{n} \cos (n \omega x) \cos (n \omega y)+\sum_{n} a_{n} \sin (n \omega x) \sin (n \omega y)\end{aligned}

所以可以設定

f 0(x) 1e βTβT g 0(y) f 0(y)\begin{aligned}f_{0}(x) & \equiv \sqrt{\frac{1-e^{-\beta T}}{\beta T}} \\g_{0}(y) & \equiv f_{0}(y)\end{aligned}

其他的 f i(x)f_{i}(x)g i(x)g_{i}(x)

f 2n1(x)a ncos(nωx) g 2n1(y)f 2n1(y) f 2n(x)a nsin(nωx) g 2n(y)f 2n(y)\begin{aligned}& f_{2 n-1}(x) \equiv \sqrt{a_{n}} \cos (n \omega x) \\& g_{2 n-1}(y) \equiv f_{2 n-1}(y) \\& f_{2 n}(x) \equiv \sqrt{a_{n}} \sin (n \omega x) \\& g_{2 n}(y) \equiv f_{2 n}(y)\end{aligned}

所以

0 T 0 Te β|xy|dz xdz y =T+ i 0 Tf i(x)dz x 0 Tg i(y)dz y 0 Tf i(s)g i(s)ds =T+ i( 0 Tf i(x)dz x) 2 0 Tf i(s) 2ds =T+( 0 T1e βTβTdz x) 21e βTβ + n=1 ( 0 Ta ncos(nωx)dz x) 2+( 0 Ta nsin(nωx)dz x) 2a nT =T1e βTβ+1e βTβT( 0 Tdz x) 2 + n=1 a n(( 0 Tcos(nωx)dz x) 2+( 0 Tsin(nωx)dz x) 2T)\begin{aligned}& \int_{0}^{T} \int_{0}^{T} e^{-\beta|x-y|} d z_{x} d z_{y} \\& =T+\sum_{i} \int_{0}^{T} f_{i}(x) d z_{x} \int_{0}^{T} g_{i}(y) d z_{y}-\int_{0}^{T} f_{i}(s) g_{i}(s) d s \\& =T+\sum_{i}\left(\int_{0}^{T} f_{i}(x) d z_{x}\right)^{2}-\int_{0}^{T} f_{i}(s)^{2} d s \\& =T+\left(\int_{0}^{T} \sqrt{\frac{1-e^{-\beta T}}{\beta T}} d z_{x}\right)^{2}-\frac{1-e^{-\beta T}}{\beta} \\& +\sum_{n=1}^{\infty}\left(\int_{0}^{T} \sqrt{a_{n}} \cos (n \omega x) d z_{x}\right)^{2}+\left(\int_{0}^{T} \sqrt{a_{n}} \sin (n \omega x) d z_{x}\right)^{2}-a_{n} T \\& =T-\frac{1-e^{-\beta T}}{\beta}+\frac{1-e^{-\beta T}}{\beta T}\left(\int_{0}^{T} d z_{x}\right)^{2} \\& +\sum_{n=1}^{\infty} a_{n}\left(\left(\int_{0}^{T} \cos (n \omega x) d z_{x}\right)^{2}+\left(\int_{0}^{T} \sin (n \omega x) d z_{x}\right)^{2}-T\right)\end{aligned}

定義

Z 0 0 Tdz x Z 2n1 0 Tcos(nωx)dz x Z 2n 0 Tsin(nωx)dz x\begin{aligned}& Z_{0} \equiv \int_{0}^{T} d z_{x} \\& Z_{2 n-1} \equiv \int_{0}^{T} \cos (n \omega x) d z_{x} \\& Z_{2 n} \equiv \int_{0}^{T} \sin (n \omega x) d z_{x}\end{aligned}

模擬這群相關 normal 機率變數後即可用

T(1 n=1 Na n)1e βTβ+1e βTβTZ 0 2+ n=1 Na n(Z 2n1 2+Z 2n 2)T\left(1-\sum_{n=1}^{N} a_{n}\right)-\frac{1-e^{-\beta T}}{\beta}+\frac{1-e^{-\beta T}}{\beta T} Z_{0}^{2}+\sum_{n=1}^{N} a_{n}\left(Z_{2 n-1}^{2}+Z_{2 n}^{2}\right)

模擬

0 T 0 Te β|xy|dz xdz y\int_{0}^{T} \int_{0}^{T} e^{-\beta|x-y|} d z_{x} d z_{y}

誤差控制。 η i=a iT2\eta_{i}=\sqrt{\frac{a_{i} T}{2}} 所以 2 i>Nη i 2ε\sqrt{2} \sum_{i>N} \eta_{i}^{2} \leq \epsilonT2 n>Na nε\frac{T}{\sqrt{2}} \sum_{n>N} a_{n} \leq \epsilon

T2 n>Na n =T2 n>N2β(1+e βT(1) n+1)(β 2+n 2ω 2)T =2β((1e βT) n>N, even 1β 2+n 2ω 2+(1+e βT) n>N, odd 1β 2+n 2ω 2) <2β((1e βT) n>N, even 12 n2 n1s 2ω 2ds+(1+e βT) n>N, odd 12 n2 n1s 2ω 2ds) <β2((1e βT) N1 1s 2ω 2ds+(1+e βT) N1 1s 2ω 2ds) =2βω 2(N1)\begin{aligned}&amp; \frac{T}{\sqrt{2}} \sum_{n&gt;N} a_{n} \\&amp; =\frac{T}{\sqrt{2}} \sum_{n&gt;N} \frac{2 \beta\left(1+e^{-\beta T}(-1)^{n+1}\right)}{\left(\beta^{2}+n^{2} \omega^{2}\right) T} \\&amp; =\sqrt{2} \beta\left(\left(1-e^{-\beta T}\right) \sum_{n&gt;N, \text { even }} \frac{1}{\beta^{2}+n^{2} \omega^{2}}+\left(1+e^{-\beta T}\right) \sum_{n&gt;N, \text { odd }} \frac{1}{\beta^{2}+n^{2} \omega^{2}}\right) \\&amp; &lt;\sqrt{2} \beta\left(\left(1-e^{-\beta T}\right) \sum_{n&gt;N, \text { even }} \frac{1}{2} \int_{n-2}^{n} \frac{1}{s^{2} \omega^{2}} d s+\left(1+e^{-\beta T}\right) \sum_{n&gt;N, \text { odd }} \frac{1}{2} \int_{n-2}^{n} \frac{1}{s^{2} \omega^{2}} d s\right) \\&amp; &lt;\frac{\beta}{\sqrt{2}}\left(\left(1-e^{-\beta T}\right) \int_{N-1}^{\infty} \frac{1}{s^{2} \omega^{2}} d s+\left(1+e^{-\beta T}\right) \int_{N-1}^{\infty} \frac{1}{s^{2} \omega^{2}} d s\right) \\&amp; =\frac{\sqrt{2} \beta}{\omega^{2}(N-1)}\end{aligned}

所以如果 NN 滿足 2βω 2(N1)<ε\frac{\sqrt{2} \beta}{\omega^{2}(N-1)}&lt;\epsilon 則可以讓誤差機率變數的標準差小於 ε\epsilon