LagrangeVariation

HomePage | Memberswill go by tor | RecentChanges | Join |

Action is defined as A= τ 1 τ 2L(τ,q,q˙)dτA=\int_{\tau_1}^{\tau_2} L(\tau, q, \dot{q}) d \tauwhere q˙\dot{q} means dqdτ\frac{d q}{d \tau}

The word "path" is only spatial so here comes the word "world line" to describe the multi dimensional curve (τ,q(τ))(\tau, q(\tau)). To find the world line that minimizes/maximize AA. Assume q(τ)q(\tau) is the optimal and any small variation of q(τ)+εη(τ)q(\tau)+\epsilon \cdot \eta(\tau) that keeps the end points intact, aka η(τ 1)=η(τ 2)=0\eta(\tau_1)=\eta(\tau_2)=0, then the action AA becomes a function of ε\epsilon.

A(ε) = τ 1 τ 2L(τ,q+εη,q˙+εη˙)dτ 0 =dA(ε)dε| ε=0 = τ 1 τ 2Lqη+Lq˙η˙dτ = τ 1 τ 2Lqηdτ+ τ 1 τ 2Lq˙η˙dτ = τ 1 τ 2Lqηdτ+Lq˙| τ 2η(τ 2)Lq˙| τ 1η(τ 1) τ 1 τ 2ηdLq˙dτdτ = τ 1 τ 2Lqηdτ τ 1 τ 2ηdLq˙dτdτ = τ 1 τ 2η(LqdLq˙dτ)dτ\begin{aligned}A(\epsilon)&=\int_{\tau_1}^{\tau_2} L(\tau, q+\epsilon \cdot \eta, \dot{q}+\epsilon \cdot \dot{\eta}) d \tau\\\\0&=\frac{d A(\epsilon)}{d \epsilon} \vert_{\epsilon=0} \\\\&=\int_{\tau_1}^{\tau_2} \frac{\partial L}{\partial q} \cdot \eta +\frac{\partial L}{\partial \dot{q}} \cdot \dot{\eta} d \tau\\\\&=\int_{\tau_1}^{\tau_2} \frac{\partial L}{\partial q} \cdot \eta d \tau+\int_{\tau_1}^{\tau_2}\frac{\partial L}{\partial \dot{q}} \cdot \dot{\eta} d \tau\\\\&=\int_{\tau_1}^{\tau_2} \frac{\partial L}{\partial q} \cdot \eta d \tau+\frac{\partial L}{\partial \dot{q}}\vert_{\tau_2} \eta(\tau_2)-\frac{\partial L}{\partial \dot{q}}\vert_{\tau_1} \eta(\tau_1)-\int_{\tau_1}^{\tau_2}\eta \frac{d \frac{\partial L}{\partial \dot{q}}}{d \tau} d \tau\\\\&=\int_{\tau_1}^{\tau_2} \frac{\partial L}{\partial q} \cdot \eta d \tau -\int_{\tau_1}^{\tau_2}\eta \frac{d \frac{\partial L}{\partial \dot{q}}}{d \tau} d \tau\\\\&=\int_{\tau_1}^{\tau_2} \eta \cdot \left(\frac{\partial L}{\partial q}-\frac{d \frac{\partial L}{\partial \dot{q}}}{d \tau}\right) d \tau\end{aligned}

Note. By the above math, one can see in variation problem the parameters of starting and end points are fixed so that taking derivative has nothing to do with the integration. This method was first introduced by Lagrange for classical physics where L(q,q˙)=energypertential energy=12q˙ 2+GMqL(q, \dot{q})=\text{energy}-\text{pertential energy}=\frac{1}{2} \dot{q}^2 +\frac{G M}{q} , the variation condition leads to Newton's law q¨=GMq 2\ddot{q}=-\frac{G M}{q^2}

To avoid (1) ambiguity in variables and functions (2) pollution/crowdy of function names, let F(τ;x)=(F 0(τ;x),,F n(τ;x))F(\tau; x)=(F_0(\tau; x),\cdots,F_n(\tau; x)) denote the functions for the point q=(q 0,,q n)q=(q_0,\cdots,q_n) with respect to the parametric named 'τ\tau'. L(τ,q,q˙)dτL(\tau, q, \dot{q}) d \tau in the integral really means L(x,F(τ;x),F(τ;x))dxL(x, F(\tau;x), F'(\tau;x)) d x and xx is just a place-holder in the integral. Therefore for L(τ,q 0,,q n,q 0˙,,q n˙)L(\tau,q_0, \cdots, q_n, \dot{q_0}, \cdots, \dot{q_n}), the variation condition equations for q i(τ)q_i(\tau) are

i =0n F i(τ;τ 0) =q i,0 F i(τ;τ 1) =q i,1 d(Lq i˙| q=F(τ;τ),q˙=F(τ;τ))dτ =Lq i| q=F(τ;τ),q˙=F(τ;τ)\begin{aligned}i&=0 \cdots n\\\\F_i(\tau;\tau_0)&=q_{i,0}\\\\F_i(\tau;\tau_1)&=q_{i,1}\\\\\frac{d \left(\frac{\partial L}{\partial \dot{q_i}} \vert_{q=F(\tau;\tau),\dot{q}=F'(\tau;\tau)}\right)}{d \tau}&=\frac{\partial L}{\partial q_i} \vert_{q=F(\tau;\tau),\dot{q}=F'(\tau;\tau)}\end{aligned}

The value of LL under a world line is uniquely determined. However, if the starting and end points q i,0,q i,1q_{i,0}, q_{i,1} are the only concern and the starting and end parameter τ\tau are free to be change by re-parametric, like cases when LL has no τ\tau in its argument, then a re-parametric from τ\tau to another parametric ss starting from 0 could be arranged after a world line is given. The parameter value of starting and end points in the integral could change accordingly from F i(τ;τ 0)=q i,0F_i(\tau;\tau_0)=q_{i,0} to F i(s;0)=q i,0F_i(s;0)=q_{i,0} but formally the same variation condition:

d(Lq i˙| q=F(s;s),q˙=F(s;s))ds=Lq i| q=F(s;s),q˙=F(s;s)\frac{d \left(\frac{\partial L}{\partial \dot{q_i}} \vert_{q=F(s;s),\dot{q}=F'(s;s)}\right)}{d s}=\frac{\partial L}{\partial q_i} \vert_{q=F(s;s),\dot{q}=F'(s;s)}

A simple corollary is that the variation condition claims Lq˙| q=F(τ;τ),q˙=F(τ;τ)\frac{\partial L}{\partial \dot{q}} \vert_{q=F(\tau;\tau),\dot{q}=F'(\tau;\tau)} are constants if LL has no qq for its argument which is the law of "whatever" conservation in physics.

question 1

Find shortest τ 0 τ 1x˙ 2+y˙ 2dτ\int_{\tau_0}^{\tau_1} \sqrt{\dot{x}^2+\dot{y}^2}d \tau with (loosely wording) x(τ 0)=0,x(τ 1)=10,y(τ 0)=0,y(τ 1)=10x(\tau_0)=0,x(\tau_1)=10,y(\tau_0)=0,y(\tau_1)=10

constant A,B,C x˙x˙ 2+y˙ 2=A y˙x˙ 2+y˙ 2=B x(τ)=ABy(τ)+C 0=AB0+C C=0 10=AB10 A=B x(τ)=y(τ) τ 0 τ 1x˙ 2+y˙ 2dτ= τ 0 τ 12x˙dτ=2x| τ 0 τ 1=102\begin{aligned}&\text{constant A,B,C}\\\\&\frac{\dot{x}}{\sqrt{\dot{x}^2+\dot{y}^2}}=A\\\\&\frac{\dot{y}}{\sqrt{\dot{x}^2+\dot{y}^2}}=B\\\\&x(\tau)=\frac{A}{B}y(\tau)+C\\\\&0=\frac{A}{B} \cdot 0 +C\\\\&C=0\\\\&10=\frac{A}{B} \cdot 10\\\\&A=B\\\\&x(\tau)=y(\tau)\\\\&\int_{\tau_0}^{\tau_1} \sqrt{\dot{x}^2+\dot{y}^2}d \tau=\int_{\tau_0}^{\tau_1} \sqrt{2} \dot{x} d \tau=\sqrt{2} x \vert_{\tau_0}^{\tau_1}=10\sqrt{2}\end{aligned}

Albian the starting/end points, any parametric τ\tau satisfying x(τ)=y(τ)x(\tau)=y(\tau) is an optimal world line, i.e., a straight line from (0,0) to (10,10). For example, x(τ)=y(τ)=τ 2τ 0 2τ 1 2τ 0 210x(\tau)=y(\tau)=\frac{\tau^2-\tau_0^2}{\tau_1^2-\tau_0^2} \cdot 10


Given two parametric τ\tau and ss so that q=F(τ;x)=F(s;y)q=F(\tau; x)=F(s; y), it implies a change of parameter value x=g(y)x=g(y) such that F(τ;g(y))=F(s;y)F(\tau;g(y))=F(s;y); avoid the confusing wording like q(x)=q(g(y))=q(y)q(x)=q(g(y))=q(y).

Typically the number τ 0 τ 1L(x,F(τ;x),F(τ;x))dx\int_{\tau_0}^{\tau_1} L(x,F(\tau;x),F'(\tau;x)) d x will not be the same for different parametric as different parametric change the integral bounds τ 0,τ 1\tau_0,\tau_1 or even modify the argument of the parameter argument in LL. Variation condition finds the optimal world line with fixed τ 0\tau_0 and τ 1\tau_1, but its value can change with another parametric even FF is already the optimal world line for τ 0 τ 1L(x,F(τ;x),F(τ;x))dx\int_{\tau_0}^{\tau_1} L(x,F(\tau;x),F'(\tau;x)) d x. To make this value of a world lone intrinsic irrelevant to parametric, LL must have some special property.

Along a given world line q=F(τ;τ)q=F(\tau;\tau), distance can be defined with a positive M(q,q˙)M(q,\dot{q}) who is multipliable in its dot parts and has no parameter argument. Meaning, for any function τ=g(s)\tau=g(s), the MM has such property:

M(F(τ;g(s)),F(τ;g(s)))g(s)=M(F(τ;g(s)),F(τ;g(s))g(s))\begin{aligned}&M\left(F(\tau;g(s)),F'(\tau;g(s))\right) \cdot g'(s)=M\left(F(\tau;g(s)),F'(\tau;g(s)) \cdot g'(s)\right)\end{aligned}

Then, a so-called distance metric parameter ss implies function a,ba,b of a change of parameter:

ds=M(F(τ;τ),F(τ;τ))dτ sa(τ)= τ 0 τM(F(τ;x),F(τ;x))dx,τb(s) a(τ)=M(F(τ;τ),F(τ;τ)) 1=M(F(τ;b(s)),F(τ;b(s)))b(s)=M(F(τ;b(s)),F(τ;b(s))b(s)) =M(F(s;s),F(s;s)) τ 0 τ 1M(F(τ;x),F(τ;x))dx= 0 a(τ 1)M(F(s;y),F(s;y))dy x=g(y), τ 0 τ 1M(F(τ;x),F(τ;x))dx= g 1(τ 0) g 1(τ 1)M(F(τ;g(y)),F(τ;g(y)))g(y)dy = g 1(τ 0) g 1(τ 1)M(F(τ;g(y)),F(τ;g(y)g(y)))dy= g 1(τ 0) g 1(τ 1)M(F(y;y),F(y;y))dy\begin{aligned}&d s =M\left(F(\tau;\tau),F'(\tau;\tau)\right)d \tau\\\\&s \equiv a(\tau)=\int_{\tau_0}^\tau M\left(F(\tau;x),F'(\tau;x)\right)d x, \tau \equiv b(s)\\\\&a'(\tau)=M\left(F(\tau;\tau),F'(\tau;\tau)\right)\\\\&1=M\left(F(\tau;b(s)),F'(\tau;b(s))\right) \cdot b'(s)=M\left(F(\tau;b(s)),F'(\tau;b(s)) \cdot b'(s)\right)\\\\&=M\left(F(s;s),F'(s;s)\right)\\\\&\int_{\tau_0}^{\tau_1} M\left(F(\tau;x),F'(\tau;x)\right)d x=\int_{0}^{a(\tau_1)} M\left(F(s;y),F'(s;y)\right)d y\\\\&x=g(y),\int_{\tau_0}^{\tau_1} M\left(F(\tau;x),F'(\tau;x)\right)d x=\int_{g^{-1}(\tau_0)}^{g^{-1}(\tau_1)} M\left(F(\tau;g(y)),F'(\tau;g(y))\right) g'(y) d y \\\\&=\int_{g^{-1}(\tau_0)}^{g^{-1}(\tau_1)} M\left(F(\tau;g(y)),F'(\tau;g(y) \cdot g'(y))\right) d y=\int_{g^{-1}(\tau_0)}^{g^{-1}(\tau_1)} M\left(F(y;y),F'(y;y)\right) d y\end{aligned}

And given a world line, value of M(q,q˙)dτ\int M(q,\dot{q}) d\tau, so-called distance, remains intact regardless of whatever re-parametric about τ\tau.

question 2

re-parametric the solution path of question 1 by its LL which is also a distance metric.

The solution paths are the world line of x=y=F(τ;τ)=τ 2τ 0 2τ 1 2τ 0 210x=y=F(\tau;\tau)=\frac{\tau^2-\tau_0^2}{\tau_1^2-\tau_0^2} \cdot 10, therefore,

ds=x˙ 2+y˙ 2dτ=2x˙dτ s=2x=102τ 2τ 0 2τ 1 2τ 0 2a(τ) τ=b(s)τ 0 2+(τ 1 2τ 0 2)s102 y=x=F(τ;τ)=F(s;s)=F(τ;b(s))=τ 2τ 0 2τ 1 2τ 0 210| τ=b(s)=s2\begin{aligned}&d s=\sqrt{\dot{x}^2+\dot{y}^2}d \tau=\sqrt{2}\dot{x}d\tau\\\\&s=\sqrt{2}x=10\sqrt{2}\frac{\tau^2-\tau_0^2}{\tau_1^2-\tau_0^2} \equiv a(\tau)\\\\&\tau = b(s) \equiv \sqrt{\tau_0^2+\frac{(\tau_1^2-\tau_0^2)s}{10\sqrt{2}}}\\\\&y=x=F(\tau;\tau)=F(s;s)=F(\tau;b(s))=\frac{\tau^2-\tau_0^2}{\tau_1^2-\tau_0^2} \cdot 10 \vert_{\tau=b(s)}=\frac{s}{\sqrt{2}}\end{aligned}

Or, in this simple case, one sees:

s=2x y=x=F(s;s)=s2\begin{aligned}&s=\sqrt{2}x\\&y=x=F(s;s)=\frac{s}{\sqrt{2}}\end{aligned}

Or, if τ\tau happens to be distance metric, then M(q,q˙)| q=F(τ;x),q˙=F(τ;x)=1M(q,\dot{q}) \vert_{q=F(\tau;x),\dot{q}=F'(\tau;x)}=1 because ds=M(q,q˙)dsd s=M(q,\dot{q})d s. Often, this is the equation to re-parametric old parameter to distance metric, so-called "normalization". Going through variation condition again it comes x=yx=y. Let x=y=F(s;s)=f(s)x=y=F(s;s)=f(s) by a function f(s)f(s). Then by f(s) 2+f(s) 2=1\sqrt{f'(s)^2+f'(s)^2}=1 , it follows f(s)=12f'(s)=\frac{1}{\sqrt{2}}. Combined with f(0)=0f(0)=0, it means f(s)=s2f(s)=\frac{s}{\sqrt{2}}

some demonstration

The value for a path is irrelevant to different parametric:

0 10x˙ 2+y˙ 2dt q ,0=(0,0),q ,1=(10,10) x(t)=t 210,y(t)=t 210,x˙=y˙=t5, 0 1025tdt=210100=102 w=t 2, 0 100210dw=102 x(w)=y(w)=w10,x˙=y˙=110, 0 100210dw=102\begin{aligned}&\int_0^{10} \sqrt{\dot{x}^2+\dot{y}^2}dt\\&q_{,0}=(0,0),q_{,1}=(10,10)\\&x(t)=\frac{t^2}{10},y(t)=\frac{t^2}{10},\dot{x}=\dot{y}=\frac{t}{5},\int_0^{10} \frac{\sqrt{2}}{5} t d t=\frac{\sqrt{2}}{10} \cdot 100=10\sqrt{2}\\&w=t^2,\int_0^{100} \frac{\sqrt{2}}{10} d w=10\sqrt{2}\\&x(w)=y(w)=\frac{w}{10},\dot{x}=\dot{y}=\frac{1}{10},\int_0^{100}\frac{\sqrt{2}}{10} d w=10\sqrt{2}\end{aligned}

The value for a path is relevant to the parametric, even the path is optimal:

0 10(x˙ 2+y˙ 2)dt q ,0=(0,0),q ,1=(10,10) x(t)=t 210,y(t)=t 210,x˙=t5,y˙=t5, 0 10225t 2dt=200075 x(r)=2r,y(r)=2r,x˙=2,y˙=2, 0 58dr=40 variation solving: x(t)=At,y(t)=Bt,A=B=1,x(t)=t,y(t)=t,x˙=1,y˙=1, 0 102dt=20 ds=x˙ 2+y˙ 2dt ds=2dt,s=2t,t=s2 re-parametric or variation: x(s)=As,y(s)=Bs,A=B=12,x(s)=s2,y(s)=s2, 0 102(12+12)ds=102 another distance metric: ds=x˙y˙dt=dt,s=t, 0 10(1+1)dt=20\begin{aligned}&\int_0^{10} (\dot{x}^2+\dot{y}^2) d t\\&q_{,0}=(0,0),q_{,1}= (10,10)\\\\&x(t)=\frac{t^2}{10},y(t)=\frac{t^2}{10},\dot{x}=\frac{t}{5},\dot{y}=\frac{t}{5},\int_0^{10} \frac{2}{25}t^2 dt=\frac{2000}{75}\\&x(r)=2 r, y(r)=2 r,\dot{x}=2,\dot{y}=2,\int_0^5 8 d r=40\\\\&\text{variation solving:}\\&x(t)=A t, y(t)=B t,A=B=1,x(t)=t,y(t)=t,\dot{x}=1,\dot{y}=1, \int_0^{10} 2 d t =20\\&d s =\sqrt{\dot{x}^2+\dot{y}^2}d t\\&d s = \sqrt{2}d t,s=\sqrt{2}t,t=\frac{s}{\sqrt{2}}\\\\&\text{re-parametric or variation:}\\&x(s)=A s, y(s)=B s, A=B=\frac{1}{\sqrt{2}},x(s)=\frac{s}{\sqrt{2}},y(s)=\frac{s}{\sqrt{2}},\int_0^{10\sqrt{2}} (\frac{1}{2} + \frac{1}{2}) d s=10 \sqrt{2}\\\\&\text{another distance metric:}\\&d s=\sqrt{\dot{x}\dot{y}}d t = d t,s=t,\int_0^{10} (1+1) d t=20\end{aligned}

As one can see ironically the optimal problem of 0 10(x˙ 2+y˙ 2)dτ\int_0^{10} (\dot{x}^2+\dot{y}^2) d \tau has higher value than that of 0 102(x˙ 2+y˙ 2)dτ\int_0^{10\sqrt{2}} (\dot{x}^2+\dot{y}^2) d \tau although 10<10210 &lt; 10 \sqrt{2}

general relativity

For general relativity, L= u,vg u,vq u˙q v˙L=\sum_{u,v} g_{u,v} \dot{q_u} \dot{q_v} where g u,v=g v,ug_{u,v}=g_{v,u} and g u,vg_{u,v} has no q 0q_0 and q˙\dot{q} and the parameter. LL is not a distance metric but M=LM=\sqrt{L} is a distance metric which is also the proper time.

ds=dτ u,vg u,vq u˙q v˙d s=d \tau \sqrt{\sum_{u,v} g_{u,v} \dot{q_u} \dot{q_v}}

For a typical gravity, L(r,ϕ,θ,t˙,r˙,ϕ˙,θ˙)=g 0t˙ 2g 1r˙ 2g 2ϕ˙ 2g 3θ˙ 2L(r,\phi,\theta,\dot{t},\dot{r},\dot{\phi},\dot{\theta})=g_0 \dot{t}^2-g_1 \dot{r}^2-g_2 \dot{\phi}^2-g_3 \dot{\theta}^2 where g 0,g 1,g 2,g 3g_0, g_1, g_2, g_3 are:

g 0 =1r sr g 1 =(1r sr) 1 g 2 =r 2 g 3 =r 2sin 2(ϕ)\begin{aligned}g_0&amp;=1-\frac{r_s}{r}\\g_1&amp;=(1-\frac{r_s}{r})^{-1}\\g_2&amp;=r^2\\g_3&amp;=r^2 \sin^2(\phi)\end{aligned}

The variation condition for MM and f(M)f(M) are:

d(Mq i˙| q=F(s;s),q˙=F(s;s))ds=Mq i| q=F(s;s),q˙=F(s;s) f(M)d(M(F(s;s),F(s;s)))dsMq i˙+f(M)d(Mq i˙| q=F(s;s),q˙=F(s;s))ds| q=F(s;s),q˙=F(s;s)=f(M)Mq i| q=F(s;s),q˙=F(s;s)\begin{aligned}&amp;\frac{d \left(\frac{\partial M}{\partial \dot{q_i}} \vert_{q=F(s;s),\dot{q}=F'(s;s)}\right)}{d s}=\frac{\partial M}{\partial q_i} \vert_{q=F(s;s),\dot{q}=F'(s;s)}\\\\&amp;f''(M)\frac{d \left(M(F(s;s),F'(s;s))\right)}{d s}\frac{\partial M}{\partial \dot{q_i}}+f'(M)\frac{d \left(\frac{\partial M}{\partial \dot{q_i}} \vert_{q=F(s;s),\dot{q}=F'(s;s)}\right)}{d s} \vert_{q=F(s;s),\dot{q}=F'(s;s)}=f'(M)\frac{\partial M}{\partial q_i} \vert_{q=F(s;s),\dot{q}=F'(s;s)}\end{aligned}

But M(F(s;s),F(s;s))=1M\left(F(s;s),F'(s;s)\right)=1 , so the variation condition of f(M)f(M) is again:

d(Mq i˙| q=F(s;s),q˙=F(s;s))ds=Mq i| q=F(s;s),q˙=F(s;s)\frac{d \left(\frac{\partial M}{\partial \dot{q_i}} \vert_{q=F(s;s),\dot{q}=F'(s;s)}\right)}{d s}=\frac{\partial M}{\partial q_i} \vert_{q=F(s;s),\dot{q}=F'(s;s)}

With distance metric, the variation condition of MM and L=f(M)=M 2L=f(M)=M^2 are the same. Therefore technically one can state the variation condition for LL first which is cleaner on face of deduction, then impose the condition M=1M=1 to re-parametric to the distance metric.

Then when LL optimal, 12Lq 0˙| q=F(τ;τ)\frac{1}{2}\frac{\partial L}{\partial \dot{q_0}} \vert_{q=F(\tau;\tau)} is constant named law of energy conservation and total energy E=g 0t˙E=g_0 \dot{t} which τ\tau is re-parametric to match distance metric after variation imposed, i.e. 1=g 0t˙ 2g 1r˙ 2g 2ϕ˙ 2g 3θ˙ 21=g_0 \dot{t}^2-g_1 \dot{r}^2-g_2 \dot{\phi}^2-g_3 \dot{\theta}^2 . Therefore E=g 0t˙=g 0(1+g 1r˙ 2+g 2ϕ˙ 2+g 3θ˙ 2)E=g_0 \dot{t} = \sqrt{g_0 \left(1+g_1 \dot{r}^2+g_2 \dot{\phi}^2+g_3 \dot{\theta}^2\right)}

Let t=q 0(τ),r=q 1(τ),ϕ=q 2(τ),θ=q 3(τ)t=q_0(\tau), r=q_1(\tau),\phi=q_2(\tau),\theta=q_3(\tau) for a world line dictated by an engine thrust, then 1=g 0q 0˙ 2g 1q 1˙ 2g 2q 2˙ 2g 3q 3˙ 21=g_0 \dot{q_0}^2-g_1 \dot{q_1}^2-g_2 \dot{q_2}^2-g_3 \dot{q_3}^2 so that τ\tau is itself distance metric ss. There are 3 degree of freedom to control the engine thrust for the movement as q 0˙=g 0 1(1+g 1q 1˙ 2+g 2q 2˙ 2+g 3q 3˙ 2)\dot{q_0}=\sqrt{g_0^{-1}\left(1+g_1 \dot{q_1}^2+g_2 \dot{q_2}^2+g_3 \dot{q_3}^2\right)} whose total energy, possibly not constant, is E=g 0q 0˙=g 0(1+g 1q 1˙ 2+g 21 2˙ 2+g 3q 3˙ 2)E=g_0 \dot{q_0}=\sqrt{g_0\left(1+g_1 \dot{q_1}^2+g_2 \dot{1_2}^2+g_3 \dot{q_3}^2\right)}. Not necessary optimal/geodesic as, say, being geodesic implies q 0˙\dot{q_0} of the form Cg 0 1C g_0^{-1} for some constant CC. Optimal/geodesic world line is a global concept not a local concept. Locally, any short step is a distance. Summing over all the small steps connecting two points is not necessary the geodesic line.

The variation conditions of LL are:

ug u,0F u(τ;τ)| q=F(τ;τ)=E i=13 ddτ( ug u,iF u(τ;τ)| q=F(τ;τ))=12 u,vg u,vq i| q=F(τ;τ)F u(τ;τ)F v(τ;τ)\begin{aligned}&amp;\sum_u g_{u,0} F'_u(\tau;\tau) \vert_{q=F(\tau;\tau)}=E\\\\&amp;i=1 \cdots 3\\\\&amp;\frac{d}{d \tau}\left(\sum_u g_{u,i} F'_u(\tau;\tau) \vert_{q=F(\tau;\tau)} \right)=\frac{1}{2}\sum_{u,v}\frac{\partial g_{u,v}}{\partial q_i} \vert_{q=F(\tau;\tau)} F'_u(\tau;\tau) F'_v(\tau;\tau)\end{aligned}

Solving, then an optimal world line q=F(τ;x)q=F(\tau; x) obtained. A change of parameter from τ\tau to the distance metric ds=M(F(τ;x),F(τ;x))dx,s=a(τ)= τ 0 τM(F(τ;x),F(τ;x))dx,q=F(τ;x)=F(s;y)d s=M(F(\tau;x),F'(\tau;x)) d x,s=a(\tau)=\int_{\tau_0}^{\tau} M(F(\tau;x),F'(\tau;x)) d x,q=F(\tau;x)=F(s;y) with the help of the equation M=1M=1. Then the variation problem becomes to optimize 0 a(τ 1)L(q,q˙)ds\int_0^{a(\tau_1)} L(q, \dot{q})d s and the optimal world line is q=F(s;y)q=F(s;y)

As a solving process demo, to optimize 0 1Ldτ\int_0^1 L d\tau for a math artificial parameter τ\tau where 0 is the staring point and 1 is the end point, apply the optimal conditions, two constants E,KE,K:

L=(1r sr)t˙ 2(1r sr) 1r˙ 2r 2ϕ˙ 2r 2sin 2(ϕ)θ˙ 2 (1r sr)t˙=E 2r s(rr s) 2r˙ 22(1r sr) 1r¨=r sr 2t˙ 2r s(rr s) 2r˙ 22rϕ˙ 22rsin 2(ϕ)θ˙ 2 4rr˙ϕ˙2r 2ϕ¨=2r 2sin(ϕ)cos(ϕ)θ˙ 2 r 2sin 2(ϕ)θ˙=K\begin{aligned}&amp;L=(1-\frac{r_s}{r})\dot{t}^2-(1-\frac{r_s}{r})^{-1}\dot{r}^2-r^2\dot{\phi}^2-r^2\sin^2(\phi)\dot{\theta}^2\\\\&amp;(1-\frac{r_s}{r})\dot{t}=E\\\\&amp;-2r_s(r-r_s)^{-2}\dot{r}^2-2(1-\frac{r_s}{r})^{-1}\ddot{r}=\frac{r_s}{r^2}\dot{t}^2-r_s(r-r_s)^{-2}\dot{r}^2-2r\dot{\phi}^2-2r\sin^2(\phi)\dot{\theta}^2\\\\&amp;-4r\dot{r}\dot{\phi}-2r^2\ddot{\phi}=-2r^2\sin(\phi)\cos(\phi)\dot{\theta}^2\\\\&amp;r^2\sin^2(\phi)\dot{\theta}=K\end{aligned}

By 0=r s2rt˙ 2r 2ϕ˙ 2r 2sin 2(ϕ)θ˙ 20=\frac{r_s}{2r} \dot{t}^2-r^2\dot{\phi}^2-r^2\sin^2(\phi)\dot{\theta}^2 seen above or for simplicity t˙\dot{t} is independent of how one puts the sphere coordinate for this circle orbit, put ϕ=π2\phi=\frac{\pi}{2}, then it is:

(1r sr)t˙=E 0=r st˙ 2r 22rθ˙ 2 r 2θ˙=K\begin{aligned}&amp;(1-\frac{r_s}{r})\dot{t}=E\\\\&amp;0=\frac{r_s \dot{t}^2}{r^2}-2r\dot{\theta}^2\\\\&amp;r^2\dot{\theta}=K\end{aligned}

Simplify, it is

0=r sr(1r sr) 2E 22K 2 r sr(1r sr) 1E=2K\begin{aligned}&amp;0=r_s r (1-\frac{r_s}{r})^{-2} E^2-2K^2\\\\&amp;\sqrt{r_s r}(1-\frac{r_s}{r})^{-1}E=\sqrt{2}K\end{aligned}

re-parametric to distance metric,

1=(1r sr)t˙ 2r 2θ˙ 2=(1r sr) 1E 2K 2r 2=((1r sr) 1r s2r(1r sr) 2)E 2 E=1r sr1r srr s2r=1r sr13r s2r K=r sr23r sr\begin{aligned}&amp;1=(1-\frac{r_s}{r})\dot{t}^2-r^2 \dot{\theta}^2=(1-\frac{r_s}{r})^{-1}E^2-\frac{K^2}{r^2}=\left((1-\frac{r_s}{r})^{-1}-\frac{r_s}{2r}(1-\frac{r_s}{r})^{-2}\right)E^2\\\\&amp;E=\frac{1-\frac{r_s}{r}}{\sqrt{1-\frac{r_s}{r}-\frac{r_s}{2r}}}=\frac{1-\frac{r_s}{r}}{\sqrt{1-\frac{3r_s}{2r}}}\\\\&amp;K=\sqrt{\frac{r_s r}{2-\frac{3r_s}{r}}}\end{aligned}

To conclude, with a given EE, rr is obtained, K,t˙,θ˙K,\dot{t},\dot{\theta} are derived. Some corollary:

Light orbit

Light is with infinite EE so its circle orbit is at r=1.5r sr=1.5r_s as lim Er=1.5r s\lim_{E \rightarrow \infty} r=1.5 r_s

GPS adjustment

The satellite is "free-fall" so its t sat˙=g 0 1E=113r s2r sat\dot{t_{sat}}=g_0^{-1} E=\frac{1}{\sqrt{1-\frac{3 r_s}{2r_{sat}}}}

The ground station on the Earth surface is with some "engine thrust" to fight against gravity and the rotation. Supposed it is at latitude ϕ\phi whose distance to Earth center is r ϕr_{\phi} due to Earth is not a perfect ball. Also note that it is 86164 instead of 86400 seconds per day after considering the spin of Earth:

1 =(1r sr ϕ)t ϕ˙ 2r ϕ 2cos 2(ϕ)θ˙ 2=(1r sr ϕ)t ϕ˙ 2r ϕ 2cos 2(ϕ)(2π86164) 2 t ϕ˙ =1+r ϕ 2cos 2(ϕ)(2π86164) 21r sr ϕ\begin{aligned}1&amp;=\left(1-\frac{r_s}{r_{\phi}}\right) \dot{t_{\phi}}^2-r_{\phi}^2 \cos^2(\phi) \dot{\theta}^2=\left(1-\frac{r_s}{r_{\phi}}\right)\dot{t_{\phi}}^2- r_{\phi}^2\cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2\\\\\dot{t_{\phi}}&amp;=\sqrt{\frac{1+r_{\phi}^2\cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2}{1-\frac{r_s}{r_{\phi}}}}\end{aligned}

Therefore,

dτ satdτ ϕ =t ϕ˙t sat˙=(13r s2r sat)(1+r ϕ 2cos 2(ϕ)(2π86164) 2)1r sr ϕ =1+r sr ϕ+r ϕ 2cos 2(ϕ)(2π86164) 23r s2r sat(1+r ϕ 2cos 2(ϕ)(2π86164) 2)1r sr ϕ 1+r sr ϕ+r ϕ 2cos 2(ϕ)(2π86164) 23r s2r sat(1+r ϕ 2cos 2(ϕ)(2π86164) 2)2(1r sr ϕ)\begin{aligned}\frac{d \tau_{sat}}{d \tau_{\phi}}&amp;=\frac{\dot{t_{\phi}}}{\dot{t_{sat}}}=\sqrt{\frac{\left(1-\frac{3 r_s}{2r_{sat}}\right)\left(1 + r_{\phi}^2\cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2\right)}{1-\frac{r_s}{r_{\phi}}}}\\\\&amp;=\sqrt{1+\frac{\frac{r_s}{r_{\phi}}+r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2-\frac{3r_s}{2r_{sat}}\left(1+r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2\right)}{1-\frac{r_s}{r_{\phi}}}}\\\\&amp;\approx 1+\frac{\frac{r_s}{r_{\phi}}+r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2-\frac{3r_s}{2r_{sat}}\left(1+r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2\right)}{2\left(1-\frac{r_s}{r_{\phi}}\right)}\end{aligned}

Assume ground station at latitude 45 degree. Earth's r sr_s is 8.8698×10 68.8698 \times 10^{-6} km. Earth's radius is 6378 km. GPS satellite is of high 20200 km aka r sat=26578r_{sat}=26578 km and accordingly this number is higher than 1, meaning, satellite clock is faster than that of ground stations. Put all numbers in, it is 3.840×10 53.840 \times 10^{-5} second per day. However, Starlink satellite is of height 550 km and this number is lower than 1 and its clock is slower than that of ground stations. As r ϕ 2cos 2(ϕ)(2π86164) 2=1.203×10 12r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2=1.203 \times 10^{-12} , the break-even satellite orbit is roughly 3180 km above the sea level:

r satr ϕ=321+r ϕ 2cos 2(ϕ)(2π86164) 21+r ϕr sr ϕ 2cos 2(ϕ)(2π86164) 21.5\frac{r_{sat}}{r_{\phi}}=\frac{3}{2} \cdot \frac{1+r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2}{1+\frac{r_{\phi}}{r_s} \cdot r_{\phi}^2 \cos^2(\phi)\left(\frac{2\pi}{86164}\right)^2} \approx 1.5