化學反應正平方根

HomePage | Memberswill go by tor | RecentChanges | Join |

AB+C\begin{aligned}A \rightarrow B + C\end{aligned}

The initial amount and the change:

A,B,C =a,b,c y,+y,+y\begin{aligned}A,B,C &= a,b,c\\ &\rightarrow -y,+y,+y\end{aligned}

Equilibrium

k=(b+y)(c+y)ay 0=y 2+(b+c+k)y+bcka y=(b+c+k)+(b+c+k) 24bc+4ka2\begin{aligned}k = \frac{(b + y)(c + y )}{a - y}\\0 = y^2 + (b + c + k) y + b c - k a\\y= \frac{- (b + c + k) + \sqrt{(b + c + k)^2 - 4 b c + 4 k a}}{2} \end{aligned}

If negative square root is accepted, by c+y>0c+y>0

0<c+(b+c+k)(b+c+k) 24bc+4ka2 (b+c+k) 24bc+4ka<cbk (b+c+k) 24bc+4ka<(cbk) 2 (b+c+k) 2(cbk) 2<4bc4ka 2c(2b+2k)<4bc4ka c<a\begin{aligned}0 &lt; c + \frac{- (b + c + k) - \sqrt{(b + c + k)^2 - 4 b c + 4 k a}}{2}\\\sqrt{(b+c+k)^2-4b c+4k a}&lt;c-b-k\\(b+c+k)^2-4b c+4k a&lt;(c-b-k)^2\\(b+c+k)^2-(c-b-k)^2&lt;4b c-4k a\\2c(2b+2k)&lt;4b c-4k a\\c&lt;-a\end{aligned}

Similarly, b<ab &lt; -a

So, max(b,c)<a\max(b, c)&lt; -a

If a contradiction occurs, then the one with negative squared root shall be dropped. A contradiction if one of bb and cc are non-negative and aa is positive.

Another explanation as below.

With the equation 0=Ax 2+Bx+C,A>00 = A x^2 + B x + C, A&gt;0 and the requirement that the solution shall accommodate the case when AA is tiny around zero, we have

x=BB 24AC2Ax = \frac{-B -\sqrt{B^2 - 4 A C}}{2 A}x=B+B 24AC2Ax =\frac{-B + \sqrt{B^2 - 4 A C}}{2 A}

The solution must take limit to be the right answer x=CBx = \frac{-C}{B} when AA takes limit to zero

Therefore it must be:

- When BB is positive, the right answer is positive square root - When BB is negative, the right answer is negative square root

And the original equation is in fact

0=1b+c+ky 2+y+bckab+c+k\begin{aligned}0 = \frac{1}{b + c + k}y^2 + y + \frac{b c - k a}{b + c + k}\end{aligned}

whose BB is positive