酸鹼中和

HomePage | Memberswill go by tor | RecentChanges | Join |

AW W+A H 2O WQ\begin{aligned}A W &\rightarrow W+A\\H_2 O &\rightarrow WQ\end{aligned}

The amount and the change: AW,W,A,Q =a,b,c,d x,+x,+x,0 0,+y,0,+y\begin{aligned}A W,W,A,Q&=a,b,c,d\\&\rightarrow -x,+x,+x,0\\&\rightarrow 0,+y,0,+y\end{aligned}

The equilibrium equations:

K =(b+x+y)(c+x)ax K w =(b+x+y)(d+y)\begin{aligned}K &= \frac{(b + x + y) (c + x)} {a - x} \\K_w &=(b + x + y) ( d + y ) \end{aligned}

To Solve, y=K w(c+x)K(ax)d K w=(bd+x+K w(c+x)K(ax))K w(c+x)K(ax) kK wK (bd+x)(ax)+k(c+x)=(bd)a+kc+(ab+d+k)xx 2 K w=((bd)a+kc+(ab+d+k)xx 2ax)K w(c+x)K(ax) K=((bd)a+kc+(ab+d+k)xx 2ax)c+xax\begin{aligned}y= \frac{K_w (c + x)}{K (a - x)} - d\\K_w= (b - d +x+\frac{K_w (c + x)}{K (a - x)})\frac{K_w (c + x)}{K (a - x)}\\k \equiv \frac{K_w}{K}\\(b - d + x)(a - x) +k(c+x)=(b - d) a + k c+(a - b + d + k) x-x^2\\K_w=\left(\frac{(b - d)a + k c+(a - b + d + k)x-x^2}{a - x}\right)\frac{K_w(c + x)}{K(a - x)}\\K=\left(\frac{(b - d) a + k c+(a - b + d + k) x-x^2}{a - x}\right) \frac{c + x}{a - x}\end{aligned}

… (1)

Concentration to be positive means x between zero of as well as between c<x<a0 = x^2 − (a - b + d + k) x-((b - d) a + k c-c&lt;x&lt;a

Also the answer remains whenever bdb - d remains

When kk is small, equation (1) turns into the typical rational for solving xx

K=(bd+x)(c+x)axK=\frac{(b-d + x)(c + x)}{a - x}

Further when d=a2,b=c=0d=\frac{a}{2}, b=c=0 , this is the case for mid point tiltration, then equation turns into

K=(a2+x)xaxK= \frac{(-\frac{a}{2} + x) x}{a - x}

where WW concentration is a2+x-\frac{a}{2} + x, and its solution is almost a2+K\frac{a}{2} + K leading to WW concentration is KK

When d=a,b=c=0d=a, b=c=0, aka the equivalent point, equation (1) turns into:

K=(a 2+(2a+k)xx 2ax)xax=(kx(ax) 2ax)xax=kx 2(ax) 2x y=kxaxa\begin{aligned}K=\left(\frac{-a^2 +(2 a + k) x-x^2}{a - x}\right) \frac{x}{a - x} = \left(\frac{k x - (a - x)^2}{a - x}\right)\frac{x}{a - x} = \frac{k x^2}{(a - x)^2} - x\\y= \frac{k x}{a - x} - a\end{aligned}

… (2)

Note that at equivalent point, kk cannot be omit even it is small because xx cannot be negative in this case because the concentration of AA would be negative. Define z=axz=a-x then

K=k(az) 2z 2+za y=kazka\begin{aligned}K=\frac{k (a - z)^2}{z^2} + z - a\\y=\frac{k a}{z} - k - a\end{aligned}

… (3)

Because zz is near zero so 3rd power of zz can be omit, then

Kz 2=k(az) 2+z 3az 2k(az) 2az 2 K+akz=az z=a1+K+ak y=k(1+K+ak)ka=k(K+a)a x=aa1+K+ak\begin{aligned}K z^2=k(a-z)^2+z^3-a z^2 \approx k(a-z)^2-a z^2\\\sqrt{K + a}{k} z = a - z\\z = \frac{a}{1 + \sqrt{\frac{K + a}{k}}}\\y= k\left(1 + \sqrt{\frac{K + a}{k}}\right) - k - a =\sqrt{ k (K + a)} - a\\x = a - \frac{a}{1 + \sqrt{\frac{K + a}{k}}}\end{aligned}

So the WW concentration is

W=x+y=k(K+a)a1+K+a|k\begin{aligned}W = x + y = \sqrt{k(K + a)} -\frac{a}{1 + \sqrt{\frac{K + a|}{k}}}\end{aligned}

When KK tends to infinite, WW will be K w\sqrt{K_w} When aa tends to infinite, WW will be 0