EquivalencePrincipleAndLorentzTransform

HomePage | Memberswill go by tor | RecentChanges | Join |

Here I present an alternative thinking to the frame transformation. Consider the four dimension space time the two reference frames, t-x-y-z and the other t'-x'-y'-z'. For math clean, assume 1 meter is defined as the length of light traveling for 1 second aka c=1c=1

Suppose the metric solution derived from the General Relativity's Einstein equation is, (dτ) 2=[dt dx dy dz]G[dt dx dy dz](d \tau)^2= \begin{bmatrix}d t & d x & d y & d z\end{bmatrix} G\begin{bmatrix}d t \\d x \\d y \\d z\end{bmatrix}

This metric, the real entity in universe, for the flat spacetime is

(dτ) 2=(dt) 2(dx) 2(dy) 2(dz) 2(d\tau)^2=(d t')^2-(d x')^2-(d y')^2-(d z')^2

Some transformation is the matrix B such that [dt dx dy dz]=B[dt dx dy dz]\begin{bmatrix}d t' \\d x' \\d y' \\d z'\end{bmatrix}=B\begin{bmatrix}d t \\d x \\d y \\d z\end{bmatrix}

To keep the metric the same in the two frames. Therefore, let A and L be the matrix satisfy [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]=L T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]L\begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix}= L^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} L

G=A T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]AG=A^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} A

Then set B=LAB = L A then the transform [dt dx dy dz]=LA[dt dx dy dz]\begin{bmatrix}d t' \\d x' \\d y' \\d z'\end{bmatrix}=L A \begin{bmatrix}d t \\d x \\d y \\d z\end{bmatrix}

will have

(dτ) 2=[dt dx dy dz][1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1][dt dx dy dz]=[dt dx dy dz]A TL T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]LA[dt dx dy dz] =[dt dx dy dz]A T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]A[dt dx dy dz]=[dt dx dy dz]G[dt dx dy dz]\begin{aligned}\\(d \tau)^2 = \begin{bmatrix}d t'&d x'&d y'&d z'\end{bmatrix} \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} \begin{bmatrix}d t' \\d x' \\d y' \\d z'\end{bmatrix} = \begin{bmatrix}d t&d x&d y&d z\end{bmatrix} A^T L^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} L A \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}\\=\begin{bmatrix}d t&d x&d y&d z\end{bmatrix} A^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} A \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}=\begin{bmatrix}d t&d x&d y&d z\end{bmatrix} G \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}\end{aligned}

Also, if B=A 1LAB = A^{- 1} L A and [dt dx dy dz]=A 1LA[dt dx dy dz]\begin{bmatrix}d t' \\d x' \\d y' \\d z'\end{bmatrix}=A^{- 1} L A \begin{bmatrix}d t \\d x \\d y \\d z\end{bmatrix} then

(dτ) 2=[dt dx dy dz]G[dt dx dy dz] =[dt dx dy dz](A 1LA) TG(A 1LA)[dt dx dy dz] =[dt dx dy dz]A TL T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]LA[dt dx dy dz] =[dt dx dy dz]A T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]A[dt dx dy dz] =[dt dx dy dz]G[dt dx dy dz]=(dτ) 2\begin{aligned}(d \tau)^2=\begin{bmatrix}d t' & d x' & d y' & d z'\end{bmatrix} G\begin{bmatrix}d t' \\d x' \\d y' \\d z'\end{bmatrix}\\=\begin{bmatrix}d t& d x& d y& d z\end{bmatrix} (A^{-1} L A)^T G (A^{-1} L A) \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}\\=\begin{bmatrix}d t& d x& d y& d z\end{bmatrix} A^T L^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} L A \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}\\=\begin{bmatrix}d t& d x& d y& d z\end{bmatrix} A^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} A \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}\\=\begin{bmatrix}d t& d x& d y& d z\end{bmatrix}G \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}=(d\tau)^2\end{aligned}

GG, being symmetric, can be column-row operations to become [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]\begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix}

A frame transformation matrix LL satisfies the above property is named Lorentz Transform which can also be defined by

[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]=L T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]L\begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} = L^T \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} L

Total 10 equations and 16 variables so, assuming no degeneration, 6 variables will be selected as parameters in the process of "finding normal basis algorithm". For Lorentz of dimension n space-time, the number of parameters are n 2n(n+1)2=n(n1)2n^2 - \frac{n(n + 1)}{2} = \frac{n(n - 1)}{2}

Question 1

how to get a matrix AA satisfying

G[G 0 0 0 0 G 13 0 0 0 0 G 13 0 0 0 0 G 13]=A T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]AG \equiv \begin{bmatrix}G&0&0&0\\0&-G^{\frac{1}{3}}&0&0\\0&0&-G^{\frac{1}{3}}&0\\0&0&0&-G^{\frac{1}{3}}\end{bmatrix}= A^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} A

Ans. let A=[G 12 0 0 0 0 G 16 0 0 0 0 G 16 0 0 0 0 G 16]A = \begin{bmatrix}G^{\frac{1}{2}}&0&0&0\\0&-G^{\frac{1}{6}}&0&0\\0&0&-G^{\frac{1}{6}}&0\\0&0&0&-G^{\frac{1}{6}}\end{bmatrix} is a solution of G=A T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]AG = A^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} A

Then

[dt dx dy dz]=LA[dt dx dy dz]\begin{bmatrix}d t' \\d x' \\d y' \\d z'\end{bmatrix}= L A \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}

will have

(dτ) 2=(dt) 2(dx) 2(dy) 2(dz) 2=G(dt) 2G 13(dx) 2G 13(dy) 2G 13(dz) 2(d \tau)^2 = (d t')^2 - (d x')^2 - (d y')^2 - (d z')^2= G (d t)^2 - G^{-\frac{1}{3}} (d x)^2 - G^{-\frac{1}{3}} (d y)^2 - G^{-\frac{1}{3}} (d z)^2

Question 2

Show the product of two Lorentz transforms L 1L_1 and L 2L_2 are again a Lorentz transform.

(L 1L 2) T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]L 1L 2=L 2 TL 1 T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]L 1L 2 =L 2 T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]L 2=[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]\begin{aligned}(L_1 L_2)^T \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} L_1 L_2 = L_2^T L_1^T \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} L_1 L_2 \\= L_2^T \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} L_2 = \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}\end{aligned}

Question 3

What is the Lorentz transform who is of the form

[* * * * * * 0 0 * 0 * 0 * 0 0 *]\begin{bmatrix}*&*&*&*\\ *&*&0&0\\ *&0&*&0\\ *&0&0&*\end{bmatrix}

Consider the 2nd column whose entries are L 01,L 11L_{01},L_{11} then 1=L 01 2+L 11 21 = - L_{01}^2 + L_{11}^2 so L 11=1+L 01 2L_{11} = \sqrt{ 1 + L_{01}^2}. Consider the 3rd column whose entries are L 02,L 22L_{02},L_{22} then 0=L 01L 020 = - L_{01} L_{02} so L 02=0L_{02} = 0 then 1=L 02 2+L 22 21 = - L_{02}^2 + L_{22}^2 so L 22=1L_{22} = 1 . Similarly, L 03=0L_{03} = 0 and L 33=1L_{33} = 1

Consider the 1st column whose entries are L 00,L 10,L 20,L 30L_{00}, L_{10}, L_{20}, L_{30} and the orthogonal equation with 2nd column 0=L 00L 01+L 10L 110 = - L_{00} L_{01} + L_{10} L_{11} then L 10=L 01L 00L 11L_{10} = \frac{L_{01} L_{00}}{L_{11}}

also orthogonal with 3rd column 0=L 200 = L_{20} similarly 0=L 300 = L_{30} then 1=L 00 2+L 10 2=(1+L 01 21+L 01 2)L 10 2- 1 = - L_{00}^2 + L_{10}^2 = ( - 1 + \frac{L_{01}^2}{1 + L_{01}^2} ) L_{10}^2 therefore L 10=L 01L_{10} = L_{01} and L 00=1+L 01 2L_{00} = \sqrt{ 1 + L_{01}^2}

To conclude, it is of the form:

[1+L 01 2 L 01 0 0 L 01 1+L 01 2 0 0 0 0 1 0 0 0 0 1]\begin{bmatrix} \sqrt{1+L_{01}^2}&L_{01}&0&0\\ L_{01}&\sqrt{1+L_{01}^2}&0&0\\ 0&0&1&0\\ 0&0&0&1\end{bmatrix}

When 0=L 01dt+1+L 01 2dx0 = L_{01}d t +\sqrt{1 + L_{01}^2}d x

aka dxdt=L 011+L 01 2\frac{d x}{d t} = - \frac{L_{01}}{\sqrt{1 + L_{01}^2}}

then dx=0d x' = 0

so the '-frame which is moving in XX-axis direction at speed of vL 011+L 01 2v \equiv - \frac{L_{01}}{\sqrt{ 1 + L_{01}^2}} so v 2(1+L 01) 2=L 01 2v^2 (1 + L_{01})^2 = L_{01}^2

aka L 01 2=v 21v 2L_{01}^2 = \frac{v^2}{1 - v^2}

and 1+L 01 2=11v 21 + L_{01}^2 = \frac{1}{1 - v^2}

Then define γ11v 21\gamma \equiv \frac{1}{\sqrt{1 - v^2}} \geq 1, the form is:

[γ γv 0 0 γv γ 0 0 0 0 1 0 0 0 0 1]\begin{bmatrix} \gamma&-\gamma v&0&0\\ -\gamma v&\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1\end{bmatrix}

similar for moving at YY or ZZ-axis only

Question 4

What is the Lorentz transform who is zero-moving speed?

It is the Euclidean rotation matrix. Let L=[1 0 0 K]L = \begin{bmatrix} 1&0\\ 0&K\end{bmatrix} where the bottom-right 3-by-3 matrix KK is the Euclidean rotation matrix. Since I=K TKI = K^T K where II for now denote the 3-by-3 identity matrix and 0 is for a 1-by-3 or 3-by-1 zero matrix,

[1 0 0 K] T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1][1 0 0 K]=[1 0 0 K T][1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1][1 0 0 K] =[1 0 0 K T][1 0 0 K]=[1 0 0 I]=[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]\begin{aligned}\begin{bmatrix} 1&0\\ 0&K\end{bmatrix}^T \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} \begin{bmatrix} 1&0\\ 0&K\end{bmatrix} = \begin{bmatrix} 1&0\\ 0&K^T\end{bmatrix} \begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix} \begin{bmatrix} 1&0\\ 0&K\end{bmatrix} \\= \begin{bmatrix} 1&0\\ 0&K^T\end{bmatrix} \begin{bmatrix} -1&0\\ 0&K\end{bmatrix} = \begin{bmatrix} -1&0\\ 0&I\end{bmatrix}=\begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}\end{aligned}

Let K=[X Y Z]K = \begin{bmatrix} X&Y&Z\end{bmatrix}, then I=K TK=[X T Y T Z T][X Y Z]=[X Y Z][X T Y T Z T]=XX T+YY T+ZZ TI = K^T K = \begin{bmatrix} X^T\\Y^T\\Z^T\end{bmatrix} \begin{bmatrix} X&Y&Z\end{bmatrix} = \begin{bmatrix} X&Y&Z\end{bmatrix} \begin{bmatrix} X^T\\Y^T\\Z^T\end{bmatrix} = X X^T + Y Y^T + Z Z^T

Question 5

With axis-parallel frame, what is the Lorentz transform of a 3 dimension v-moving frame?

Let the moving is at v=[v x v y v z]v = \begin{bmatrix} v_x\\v_y\\v_z\end{bmatrix} . Euclidean-rotation first so that in the '-frame 1|v|v\frac{1}{|v|} v is the X-axis direction vector, freely choose some YY for the YY-axis direction vector and some ZZ for the ZZ-axis direction.

[dx dy dz]=[1|v|v Y Z][dx dy dz]\begin{bmatrix} d x\\d y\\d z\end{bmatrix} = \begin{bmatrix} \frac{1}{|v|} v&Y&Z\end{bmatrix} \begin{bmatrix} d x'\\d y'\\d z'\end{bmatrix}

Let K[1|v|v Y Z]K \equiv \begin{bmatrix} \frac{1}{|v|} v&Y&Z\end{bmatrix} then [dx dy dz]=K[dx dy dz]\begin{bmatrix} d x\\d y\\d z\end{bmatrix} = K \begin{bmatrix} d x'\\d y'\\d z'\end{bmatrix}. Because I=K TK,K 1=K TI = K^T K, K^{-1} = K^T

[dx dy dz]=K 1[dx dy dz]=K T[dx dy dz]=[1|v|v T Y T Z T][dx dy dz]\begin{bmatrix} d x'\\d y'\\d z'\end{bmatrix}= K^{-1} \begin{bmatrix} d x\\d y\\d z\end{bmatrix} = K^T \begin{bmatrix} d x\\d y\\d z\end{bmatrix} = \begin{bmatrix} \frac{1}{|v|} v^T\\Y^T\\Z^T\end{bmatrix} \begin{bmatrix} d x\\d y\\d z\end{bmatrix}

Then go on XX-axis-only Lorentz transform to ''-frame then inverse the K rotation to '''-frame, so the over all Lorentz transform is

[dt dx dy dz ]=[1 0 0 0 0 1|v|v Y Z][γ γ|v| 0 0 γ|v| γ 0 0 0 0 1 0 0 0 0 1][1 0 0 1|v|v T 0 Y T 0 Z T][dt dx dy dz]=[1 0 0 0 0 1|v|v Y Z][γ γv T γ|v| γ|v|v T 0 Y T 0 Z T][dt dx dy dz] =[γ γv T γv γ|v| 2vv T+YY T+ZZ T][dt dx dy dz]=[γ γv T γv γ1|v| 2vv T+1|v| 2vv T+YY T+ZZ T][dt dx dy dz]=[γ γv T γv γ1|v| 2vv T+I][dt dx dy dz]\begin{aligned}\begin{bmatrix} d t^{'''}\\d x^{'''}\\d y^{'''}\\d z^{'''}\end{bmatrix} = \begin{bmatrix} 1&0&0&0\\0&\frac{1}{|v|}v&Y&Z\end{bmatrix} \begin{bmatrix} \gamma&-\gamma|v|&0&0\\ -\gamma|v|&\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1\end{bmatrix} \begin{bmatrix} 1&0\\0&\frac{1}{|v|}v^T\\0&Y^T\\0&Z^T\end{bmatrix} \begin{bmatrix} d t\\d x\\d y\\d z\end{bmatrix} = \begin{bmatrix} 1&0&0&0\\0&\frac{1}{|v|}v&Y&Z\end{bmatrix} \begin{bmatrix} \gamma&-\gamma v^T\\-\gamma |v|&\frac{\gamma}{|v|}v^T\\0&Y^T\\0&Z^T\end{bmatrix} \begin{bmatrix} d t\\d x\\d y\\d z\end{bmatrix}\\= \begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma}{|v|^2} v v^T + Y Y^T + Z Z^T\end{bmatrix} \begin{bmatrix} d t\\d x\\d y\\d z\end{bmatrix}= \begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + \frac{1}{|v|^2} v v^T + Y Y^T + Z Z^T\end{bmatrix} \begin{bmatrix} d t\\d x\\d y\\d z\end{bmatrix}= \begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix} d t\\d x\\d y\\d z\end{bmatrix}\end{aligned}

So the Lorentz transform is [γ γv T γv γ1|v| 2vv T+I]\begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} whose inverse is the matrix with v-v:

[γ γv T γv γ1|v| 2+I][γ γv T γv γ1|v| 2+I]=[γ 2(1v Tv) γ 2v Tγ(γ1)|v| 2v Tvv Tγv T γ 2v+γ(γ1)|v| 2vv Tv+γv γ 2vv T+(γ1) 2|v| 4vv Tvv T+2(γ1)|v| 2vv T+I] =[γ 2(1|v| 2) γ 2v Tγ(γ1)v Tγv T γ 2v+γ(γ1)v+γv γ 2vv T+(γ1) 2|v| 2vv T+2(γ1)|v| 2vv T+I]=[1 0 0 γ 2|v| 2+γ 22γ+1+2γ2)|v| 2vv T+I] =[1 0 0 γ 2(1|v| 2)1|v| 2vv T+I]=[1 0 0 1]\begin{aligned}\begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} + I\end{bmatrix} \begin{bmatrix} \gamma&\gamma v^T\\\gamma v&\frac{\gamma-1}{|v|^2} + I\end{bmatrix} = \begin{bmatrix} \gamma^2 (1-v^T v)&\gamma^2 v^T-\frac{\gamma(\gamma-1)}{|v|^2} v^T v v^T -\gamma v^T\\-\gamma^2 v+\frac{\gamma(\gamma-1)}{|v|^2} v v^T v+\gamma v&-\gamma^2 v v^T+\frac{(\gamma-1)^2}{|v|^4} v v^T v v^T +\frac{2(\gamma-1)}{|v|^2} v v^T + I\end{bmatrix} \\=\begin{bmatrix} \gamma^2 (1-|v|^2)&\gamma^2 v^T-\gamma(\gamma-1)v^T -\gamma v^T\\-\gamma^2 v+\gamma(\gamma-1) v+\gamma v&-\gamma^2 v v^T+\frac{(\gamma-1)^2}{|v|^2} v v^T +\frac{2(\gamma-1)}{|v|^2} v v^T + I\end{bmatrix}=\begin{bmatrix}1&0\\0&\frac{-\gamma^2 |v|^2 +\gamma^2-2\gamma+1+2\gamma-2)}{|v|^2} v v^T + I\end{bmatrix}\\=\begin{bmatrix}1&0\\0&\frac{\gamma^2 (1- |v|^2)-1}{|v|^2} v v^T + I\end{bmatrix} = \begin{bmatrix}1&0\\0&1\end{bmatrix}\end{aligned}

For moving-frame verification,

[dt dx dy dz]=[1 v]dt [γ γv T γv γ1|v| 2vv T+I][dt dx dy dz]=[γ γv T γv γ1|v| 2vv T+I][1 v]dt=[1γγv Tv γv+γ1|v| 2vv Tv+v]dt =[γγ|v| 2 γv+(γ1)v+v]dt=[γ 1 0]dt [γ 1 0]=[γ γv T γv γ1|v| 2vv T+I][1 v]\begin{aligned}\begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix} = \begin{bmatrix}1\\v\end{bmatrix} d t\\\begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}= \begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}1\\v\end{bmatrix} d t = \begin{bmatrix}{1}\gamma-\gamma v^T v\\-\gamma v + \frac{\gamma-1}{|v|^2} v v^T v + v\end{bmatrix} d t\\= \begin{bmatrix}\gamma-\gamma |v|^2\\-\gamma v + (\gamma-1) v + v\end{bmatrix} d t= \begin{bmatrix}\gamma^{-1}\\0\end{bmatrix} d t\\\begin{bmatrix}\gamma^{-1}\\0\end{bmatrix}=\begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}1\\v\end{bmatrix}\end{aligned}

For idle-object of '-frame:

[γ γv T γv γ1|v| 2vv T+I] 1[1 0]=[γ γv T γv γ1|v| 2vv T+I][1 0]=[γ γv]\begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix}^{-1} \begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix} \gamma&\gamma v^T\\\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}\gamma\\\gamma v\end{bmatrix}

dt=γdtd t = \gamma d t'

[dx dy dz]=γvdt\begin{bmatrix}d x\\d y\\d z\end{bmatrix}= \gamma v d t'

For idle-object of orig-frame:

[γ γv T γv γ1|v| 2vv T+I][1 0]=[γ γv]\begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}\gamma\\-\gamma v\end{bmatrix}

dt=γdtd t' = \gamma d t

[dx dy dz]=γvdt\begin{bmatrix}d x'\\d y'\\d z'\end{bmatrix}= - \gamma v d t

For relationship with classic transform, put back the light speed cc, it is

[γ γc 2v T γv γ1|v| 2vv T+I]\begin{bmatrix} \gamma&-\frac{\gamma}{c^2} v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix}

where

γ11|v| 2c 21\gamma \equiv \frac{1}{\sqrt{1-\frac{|v|^2}{c^2}}} \geq 1

When cc is infinite, it becomes [1 0 v I]\begin{bmatrix} 1&0\\-v&I\end{bmatrix} classically.

Question 6

Twin paradox. Suppose the orig-frame, ignoring Earth's gravity, is flat so its metric is

(dτ) 2=[dt dx dy dz][1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1][dt dx dy dz](d \tau)^2=\begin{bmatrix}d t&d x&d y&d z\end{bmatrix} \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} \begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}

When '-frame is some huge-accelerating and decelerating space ship, its metric is no longer flat and by general relativity theory the universal metric dτd \tau becomes

(dτ) 2=[dt dx dy dz]G[dt dx dy dz](d \tau)^2 = \begin{bmatrix}d t'& d x'&d y'&d z'\end{bmatrix} G \begin{bmatrix}d t'\\ d x'\\d y'\\d z'\end{bmatrix}

for some GG and the frame-transform is therefore

[dt dx dy dz]=[γ γv T γv γ1|v| 2vv T+I]A[dt dx dy dz]\begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}=\begin{bmatrix} \gamma&\gamma v^T\\\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} A \begin{bmatrix}d t'\\ d x'\\d y'\\d z'\end{bmatrix}

for some v,Av, A where

G=A T[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]AG = A^T \begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix} A

Suppose an example. G=[G 0 0 0 0 0 G 1 0 0 0 0 G 2 0 0 0 0 G 3]G = \begin{bmatrix}G_0&0&0&0\\0&-G_1&0&0\\0&0&-G_2&0\\0&0&0&-G_3\end{bmatrix}

and

A=[G 0 0.5 0 0 0 0 G 1 0.5 0 0 0 0 G 2 0.5 0 0 0 0 G 3 0.5]A = \begin{bmatrix}G_0^{0.5}&0&0&0\\0&G_1^{0.5}&0&0\\0&0&G_2^{0.5}&0\\0&0&0&G_3^{0.5}\end{bmatrix}

So the space-ship twin object in '-frame is

[dt dx dy dz]=[G 0 0.5dτ 0 0 0]\begin{bmatrix}d t'\\ d x'\\d y'\\d z'\end{bmatrix}=\begin{bmatrix}G_0^{-0.5}d \tau\\0\\0\\0\end{bmatrix}

and the same space-ship twin object in earth-frame is

[dt dx dy dz]=[γ γv T γv γ1|v| 2vv T+I]A[G 0 0.5dτ 0 0 0]=[γ γv T γv γ1|v| 2vv T+I][dτ 0 0 0]=[1 v]γdτ\begin{bmatrix}d t\\d x\\d y\\d z\end{bmatrix}=\begin{bmatrix} \gamma&\gamma v^T\\\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} A \begin{bmatrix}G_0^{-0.5}d \tau\\0\\0\\0\end{bmatrix}=\begin{bmatrix} \gamma&\gamma v^T\\\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}d \tau\\0\\0\\0\end{bmatrix}= \begin{bmatrix}1\\v\end{bmatrix} \gamma d \tau

While movement of different objects seen in the same frame can have different space-time length, The movement of an object in the space time have the same space-time length in every frame and can be parameterized by τ\tau. The G 0,G 1,G 2,G 3,vG_0,G_1,G_2,G_3,v can be seen as a function of τ\tau. Then:

T SpaceShip= 0 S SpaceShipG 0 0.5dτT_{SpaceShip}'= \int_0^{S_{SpaceShip}} G_0^{-0.5} d \tau

T SpaceShip= 0 S SpaceShipγdτT_{SpaceShip} = \int_0^{S_{SpaceShip}} \gamma d \tau

where S SpaceShipS_{SpaceShip} is such that for the loop, seeing "the space ship away and back":

0= 0 S SpaceShipvγdτ0 = \int_0^{S_{SpaceShip}} v \gamma d \tau

Similarly, for the Earth-twin object in earth-frame is

[dt dx dy dz]=[dτ 0 0 0]\begin{bmatrix}d t\\ d x\\d y\\d z\end{bmatrix}=\begin{bmatrix}d \tau\\0\\0\\0\end{bmatrix}

who in '-frame is

[dt dx dy dz]=A 1[γ γv T γv γ1|v| 2vv T+I][dτ 0 0 0]=[G 0 0.5 G 1 0.5v 1 G 2 0.5v 2 G 3 0.5v 3]γdτ\begin{bmatrix}d t'\\ d x'\\d y'\\d z'\end{bmatrix} = A^{-1} \begin{bmatrix} \gamma&-\gamma v^T\\-\gamma v&\frac{\gamma-1}{|v|^2} v v^T + I\end{bmatrix} \begin{bmatrix}d \tau\\0\\0\\0\end{bmatrix} = \begin{bmatrix}G_0^{-0.5}\\-G_1^{-0.5} v_1\\-G_2^{-0.5} v_2\\-G_3^{-0.5} v_3\end{bmatrix} \gamma d \tau

For a close loop, seeing "the Earth away and back",

T Earth= 0 S EarthγG 0 0.5dτT_{Earth}' = \int_0^{S_{Earth}} \gamma G_0^{-0.5} d \tau

T Earth= 0 S EarthdτT_{Earth} = \int_0^{S_{Earth}} d \tau

for some different S EarthS_{Earth} such that

0= 0 S Earth[G 1 0.5v 1 G 2 0.5v 2 G 3 0.5v 3]γdτ0 = \int_0^{S_{Earth}} \begin{bmatrix}-G_1^{-0.5} v_1\\-G_2^{-0.5} v_2\\-G_3^{-0.5} v_3\end{bmatrix} \gamma d \tau

Mathematically, the paradox is:

  • space-ship twin thinks his own aging T SpaceShipT_{SpaceShip}' and Earth twin thinks his space-ship twin aging T SpaceShipT_{SpaceShip}
  • Earth twin thinks his own aging T EarthT_{Earth} and space-ship twin thinks his Earth twin aging T EarthT_{Earth}'