Task1a

HomePage | Memberswill go by tor | RecentChanges | Join |

Task 1a The log of x df(x)x^d \cdot f(x) function: g(x)=(d(log 2(x)) 2)log 2(x)h(z)=(dz 2)zg(x) =\left(d - (log_2(x))^2\right) log_2(x) \equiv h(z)=\left(d - z^2\right) z

The graph of zz vs h(z)h(z) is a 3-degree polynomial with 3-degree coefficient -1, the right-most zero is d\sqrt{d}. Accordingly, x>2 dx df(x)<1\forall x&gt;2^\sqrt{d} \rightarrow x^d \cdot f(x) &lt; 1 aka f(x)f(x) is neg-liable

Task 1b Given dd, then because f(x)f(x) and g(x)g(x) are neg-liable, ax>af(x)<x (d+1)\exists a \forall x &gt; a \rightarrow f(x) &lt; x^{-(d+1)} and bx>bg(x)<x (d+1)\exists b \forall x &gt; b \rightarrow g(x) &lt; x^{-(d+1)}

Therefore, x>max(a,b)f(x)+g(x)<2x (d+1)\forall x &gt; max(a,b) \rightarrow f(x)+g(x) &lt; 2 x^{-(d+1)}

Because x>22x (d+1)<x d\forall x&gt;2 \rightarrow 2 x^{-(d+1)} &lt; x^{-d}, therefore x>max(2,a,b)f(x)+g(x)<2x (d+1)<x d\forall x &gt; max(2,a,b) \rightarrow f(x)+g(x) &lt; 2 x^{-(d+1)} &lt; x^{-d}