Task 1a The log of x d⋅f(x)x^d \cdot f(x) function: g(x)=(d−(log 2(x)) 2)log 2(x)≡h(z)=(d−z 2)zg(x) =\left(d - (log_2(x))^2\right) log_2(x) \equiv h(z)=\left(d - z^2\right) z
The graph of zz vs h(z)h(z) is a 3-degree polynomial with 3-degree coefficient -1, the right-most zero is d\sqrt{d}. Accordingly, ∀x>2 d→x d⋅f(x)<1\forall x>2^\sqrt{d} \rightarrow x^d \cdot f(x) < 1 aka f(x)f(x) is neg-liable
Task 1b Given dd, then because f(x)f(x) and g(x)g(x) are neg-liable, ∃a∀x>a→f(x)<x −(d+1)\exists a \forall x > a \rightarrow f(x) < x^{-(d+1)} and ∃b∀x>b→g(x)<x −(d+1)\exists b \forall x > b \rightarrow g(x) < x^{-(d+1)}
Therefore, ∀x>max(a,b)→f(x)+g(x)<2x −(d+1)\forall x > max(a,b) \rightarrow f(x)+g(x) < 2 x^{-(d+1)}
Because ∀x>2→2x −(d+1)<x −d\forall x>2 \rightarrow 2 x^{-(d+1)} < x^{-d}, therefore ∀x>max(2,a,b)→f(x)+g(x)<2x −(d+1)<x −d\forall x > max(2,a,b) \rightarrow f(x)+g(x) < 2 x^{-(d+1)} < x^{-d}