各種強弱下酸鹼中和

HomePage | Memberswill go by tor | RecentChanges | Join |

Three reactions and the change:

HAH ++A x,+x,+x BOH OH +B + y,+y,+y H 2OH ++OH z,+z,+z\begin{aligned}HA \rightarrow H^+ + A^-\\-x,+x,+x\\BOH^- \rightarrow OH^- + B^+\\-y,+y,+y\\H_2O \rightarrow H^+ +OH^-\\-z,+z,+z\end{aligned}

Equation for general initial concentration

Initial amount:

HA,H +,A ,BOH,OH ,B +=a 1,b 1,c 1,a 2,b 2,c 2HA,H^+,A^-,BOH,OH^-,B^+ = a_1,b_1,c_1,a_2,b_2,c_2

The equilibrium equations: K 1=(b 1+z+x)(c 1+x)a 1x K 2=(b 2+z+y)(c 2+y)a 2y K w=(b 1+z+x)(b 2+z+y)\begin{aligned}K_1=\frac{(b_1 + z + x)(c_1 + x)}{a_1 - x}\\K_2=\frac{(b_2 + z + y)(c_2 + y)}{a_2 - y}\\K_w=(b_1 + z + x)(b_2 + z + y)\end{aligned}

After rescale to dimensionless by K w\sqrt{K_w} where all concentrations are divided by K w\sqrt{K_w}

Therefore, by page 化學反應正平方根(%E5%8C%96%E5%AD%B8%E5%8F%8D%E6%87%89%E6%AD%A3%E5%B9%B3%E6%96%B9%E6%A0%B9)

x=(b 1+z+c 1+k 1)+(b 1+z+c 1+k 1) 24(b 1+z)c 1+4k 1a 12 y=(b 2+z+c 2+k 2)+(b 2+z+c 2+k 2) 24(b 2+z)c 2+4k 2a 22 4=(z+b 1c 1k 1+(b 1+z+c 1+k 1) 24(b 1+z)c 1+4k 1a 1)(z+b 2c 2k 2+(b 2+z+c 2+k 2) 24(b 2+z)c 2+4k 2a 2)\begin{aligned}k_1=\frac{(b_1 + z + x)(c_1 + x)}{a_1 − x}\\k_2= \frac{(b_2 + z + y)(c_2 + y)}{a_2 - y}\\1=(b_1 + z+ x)(b_2 + z + y)\end{aligned\begin{aligned}x= \frac{- (b_1 + z + c_1 + k_1) + \sqrt{(b_1 + z + c_1 + k_1)^2 - 4 ( b_1 + z ) c_1 + 4 k_1 a_1}}{2}\\y= \frac{-(b_2 + z + c_2 + k_2) + \sqrt{(b_2 + z + c_2 + k_2)^2 - 4 ( b_2 + z ) c_2 + 4 k_2 a_2}}{2}\\4=\left(z + b_1 - c_1 - k_1 + \sqrt{(b_1 + z + c_1 + k_1)^2 - 4 ( b_1 + z ) c_1 + 4 k_1 a_1}\right)\left(z + b_2 - c_2 - k_2 + \sqrt{(b_2 + z + c_2 + k_2)^2 - 4 ( b_2 + z ) c_2 + 4 k_2 a_2}\right)\end{aligned}

… (2)

Special case of initial

HA,H +,A ,BOH,OH ,B +=a 1,0,0,a 2,0,0HA,H^+,A^-,BOH,OH^-,B^+= a_1,0,0,a_2,0,0

Knowing that the reacting amount of HAHA, xx, and of BOHBOH, yy are almost the same, the balance equation of HA+BOHH 2O+A +B +HA + BOH \rightarrow H_2O + A^- + B^+ can be applied.

k 1k 2=x 2(a 1x)(a 2x)\begin{aligned}k_1 k_2= \frac{x^2}{(a_1 - x)(a_2 - x)}\end{aligned}

So, 0=(1k 1k 21)x 2+(a 1+a 2)xa 1a 20= (\frac{1}{k_1 k_2} - 1) x^2 +(a_1 + a_2)x - a_1 a_2

And x=(a 1+a 2)+(a 1+a 2) 2+4(1k 1k 21)a 1a 22(1k 1k 21) H +=k 1(a 1x)x OH =k 2(a 2x)x\begin{aligned}x = \frac{- (a_1 + a_2) + \sqrt{(a_1 + a_2)^2 + 4 \left(\frac{1}{k_1 k_2} - 1\right) a_1 a_2}}{2\left(\frac{1}{k_1 k_2} - 1\right)}\\H^+ = \frac{k_1(a_1 - x)}{x}\\ OH^- = \frac{k_2(a_2 - x)}{x}\end{aligned}

When a 1=a 2=aa_1 = a_2 = a, we have k 1k 2=xax\sqrt{k_1 k_2} = \frac{x}{a - x} so H +=k 1k 2H^+= \sqrt{\frac{k_1}{k_2}}

The real H +H^+ is H +=K wK 1K 2H^+ = \sqrt{\frac{K_w K_1}{K_2}} and therefore pH=7+12logK 2K 1pH = 7 + \frac{1}{2} \log{\frac{K_2}{K_1}}

Say, a 1<a 2a_1 &lt; a_2, this initial is equivalent to another initial HA,H +,A ,BOH,OH ,B +=0,0,a 1,a 2a 1,0,a 1HA,H^+,A^-,BOH,OH^-,B^+ = 0,0,a_1,a_2- a_1,0, a_1

so by (2) its equation is

4=(za 1k 1+(z+a 1+k 1) 24a 1z)(za 1k 2+(z+a 1+k 2) 24a 1z+4k 2(a 2a 1))\begin{aligned}4=\left(z - a_1 - k_1 + \sqrt{(z + a_1 + k_1)^2 - 4 a_1 z}\right)\left(z - a_1 - k_2 + \sqrt{(z + a_1 + k_2)^2 - 4 a_1 z + 4 k_2 ( a_2 - a_1 )}\right)\end{aligned}

When at equivalence point it is

4=(zak 1+(z+a+k 1) 24az)(zak 2+(z+a+k 2) 24az)\begin{aligned}4=\left(z - a - k_1 + \sqrt{(z + a + k_1)^2 - 4 a z}\right)\left(z - a - k_2 + \sqrt{(z + a + k_2)^2 - 4 a z}\right)\end{aligned}

and further k 2k_2 tends to infinite, this equation becomes

2=(zak 1+(z+a+k 1) 24az)z\begin{aligned}2=\left(z - a - k_1 + \sqrt{(z + a + k_1)^2 - 4 a}z\right)z\end{aligned}

Range of z

To decide range of zz,

z+b 1c 1k 1+(b 1+z+c 1+k 1) 24(b 1+z)c 1+4k 1a 1>0\begin{aligned}z + b_1 - c_1 - k_1 + \sqrt{(b_1 + z + c_1 + k_1)^2 - 4(b_1 + z)c_1 + 4 k_1 a_1} &gt; 0\end{aligned}

Case 1. z+b 1c 1k 1>0z + b_1 - c_1 - k_1 &gt; 0 then this is obviously true, meaning z>c 1+k 1b 1z &gt; c_1 + k_1 - b_1

Case 2. z+b 1c 1k 10z + b_1 - c_1 - k_1 \leq 0 then

(b 1+z+c 1+k 1) 24(b 1+z)c 1+4k 1a 1>c 1+k 1b 1z0\begin{aligned}\sqrt{(b_1 + z + c_1 + k_1)^2 - 4(b_1 + z)c_1 + 4 k_1 a_1}&gt; c_1 + k_1 - b_1 - z \geq 0\end{aligned}

Therefore,

So it is z>c 1+k 1b 1\begin{aligned}(b_1 + z + c_1 + k_1)^2 - 4(b_1 + z)c_1 + 4 k_1 a_1 &gt; (c_1 + k_1 - b_1 - z)^2\\(b_1 + z + c_1 + k_1)^2 − (c_1 + k_1 - b_1 - z)^2 &gt; 4(b_1 + z)c_1 - 4 k_1 a_1\\4(c_1 + k_1)(b_1 + z)&gt; 4(b_1 + z)c_1 − 4 k_1 a_1\\4k_1(b_1 + z)&gt; -4 k_1 a_1\\z &gt; -a_1 - b_1\end{alignz &gt; c_1 + k_1 - b_1 or together to be z>a 1b 1c_1 + k_1 - b_1 ≥ z &gt; - a_1 - b_z &gt; - a_1 - b_1

Similarly z>a 2b 2z &gt; - a_2 - b_2 so overall it is z>min(a 1+b 1,a 2+b 2)z &gt; - \min(a_1 + b_1 , a_2 + b_2 ) . This is intuitive by thinking the initial being a 1a_1 and a 2a_2 move to the right side of the reactions totally.

Equation (2) by x

z=k 1(a 1x)c 1+xxb 1=xb 1k 1+k 1(a 1+c 1)c 1+x k 1k 2a 2yc 2+y=c 1+xa 1x a 2yc 2+y=c 1+xk 1k 2a 1k 1k 2x a 2ya 2+c 2=c 1+xk 1k 2a 1+c 1+(1k 1k 2)x y=a 2(a 2+c 2)c 1+(a 2+c 2)xk 1k 2a 1+c 1+(1k 1k 2)x=k 1k 2a 1a 2c 1c 2(k 1k 2a 2+c 2)xk 1k 2a 1+c 1+(1k 1k 2)x 1=k 1(a 1x)c 1+x(b 2b 1x+k 1a 1k 1xc 1+x+k 1k 2a 1a 2c 1c 2(k 1k 2a 2+c 2)xk 1k 2a 1+c 1+(1k 1k 2)x)\begin{aligned}z= \frac{k_1(a_1 - x)}{c_1 + x} - x - b_1 = - x - b_1 - k_1 + \frac{k_1(a_1 + c_1)}{c_1 + x}\\k_1 k_2 \frac{a_2 - y}{c_2 + y}= \frac{c_1 + x}{a_1 - x}\\\frac{a_2 - y}{c_2 + y}=\frac{c_1 + x}{k_1 k_2 a_1 - k_1 k_2 x}\\\frac{a_2 - y}{a_2 + c_2}=\frac{c_1 + x}{k_1 k_2 a_1 + c_1 + ( 1 - k_1 k_2 ) x}\\y= a_2 - \frac{(a_2 + c_2)c_1 +(a_2 + c_2)x}{k_1 k_2 a_1 + c_1 + (1 - k_1 k_2)x}= \frac{k_1 k_2 a_1 a_2 - c_1 c_2 - (k_1 k_2 a_2 + c_2) x}{k_1 k_2 a_1 + c_1 +(1 - k_1 k_2)x}\\1 = \frac{k_1(a_1 - x)}{c_1 + x}\left(b_2 - b_1 - x + \frac{k_1 a_1 - k_1 x}{c_1 + x} + \frac{k_1 k_2 a_1 a_2 - c_1 c_2 -(k_1 k_2 a_2 + c_2)x}{k_1 k_2 a_1 + c_1 +(1 - k_1 k_2) x}\right)\end{aligned}

… (3)

Equation at equivalence point

At equivalence point, initial with a 1,b 1,c 1,a 2,b 2,c 2=0,0,a,0,0,aa_1,b_1,c_1,a_2,b_2,c_2=0,0,a,0,0,a this becomes

1=k 1xa+x(xk 1xa+x+a 2axa+(1k 1k 2)x)\begin{aligned}1 = \frac{-k_1 x}{a + x}\left( -x - \frac{k_1 x}{a + x} + \frac{- a^2 - a x}{a + (1 - k_1 k_2) x}\right)\end{aligned}

For case of large k 2k_2 and ak 1\frac{a}{k_1}, the term k 1xa+x+a 2axa+(1k 1k 2)x- \frac{k_1 x}{a + x} + \frac{- a^2 - a x}{a + (1 - k_1 k_2) x} is small compared with x-x so this equation becomes

1=k 1xa+x(x)=k 1x 2a+x\begin{aligned}1 = \frac{- k_1 x}{a + x}(-x) = \frac{k_1 x^2}{a + x}\end{aligned}

which is the conventional method in the textbook to find the concentration of OH OH^-.

For case of equal kk strength

x+a 2axa+(1k 1k 2)x=k 1k 2x 2(a+x) 2a+(1k 1k 2)x=(x+a) 2k 2x 2a+(1k 2)x=(kxa+x1)(kxa+x+1)a+(1k 2)x(x+a) 2\begin{aligned}- x + \frac{- a^2 - a x}{a +(1 - k_1 k_2) x} = \frac{k_1 k_2 x^2 - ( a + x )^2}{a + (1 - k_1 k_2) x} = -\frac{(x + a)^2 - k^2 x^2}{a + (1 - k^2) x} = \frac{\left(\frac{-k x}{a + x} - 1\right)\left(\frac{-k x}{a + x} + 1\right)}{a + (1 - k^2)x}(x + a)^2\end{aligned}

Therefore

0=(kxa+x) 21+kxa+x.(kxa+x1)(kxa+x+1)a+(1k 2)x(x+a) 2 =(kxa+x1)(kxa+x+1)(1+kxa+x.(x+a) 2a+(1k 2)x) =(kxa+x1)(kxa+x+1)(1kxa+xa+(1k 2)x) =(kxa+x1)(kxa+x+1)(x 2+(a+k1k)xak(k1k)xak)\begin{aligned}0= \left(\frac{- k x}{a + x}\right)^2 - 1 + \frac{- k x}{a + x} . \frac{\left(\frac{- k x}{a + x} - 1\right)\left(\frac{- k x}{a + x} + 1\right)}{a + (1 - k^2)x}(x + a)^2 \\= \left(\frac{- k x}{a + x} - 1\right)\left(\frac{- k x}{a + x} + 1\right)\left(1 + \frac{- k x}{a + x} . \frac{(x + a)^2}{a +(1 - k^2) x}\right)\\= \left(\frac{- k x}{a + x} - 1\right)\left(\frac{- k x}{a + x} + 1\right)\left(1 - k x \frac{a + x}{a +(1 - k^2)x}\right)\\= \left(\frac{- k x}{a + x} - 1\right)\left(\frac{- k x}{a + x} + 1\right)\left(\frac{x^2 + (a + k - \frac{1}{k})x - \frac{a}{k}}{(k - \frac{1}{k}) x - \frac{a}{k}}\right)\end{aligned}

Knowing that concentration of H +H^+ being kxa+x\frac{- k x}{a + x} must be positive, it is 1 and x=a1+kx = \frac{- a}{1 + k}

The zeros of x 2+(a+k1k)xakx^2 +(a + k -\frac{1}{k})x - \frac{a}{k} are either positive or less than a- a meaning the concentration of A A^- is negative. Because otherwise:

x=(a+k1k)a+k1k) 2+4ak2>a\begin{aligned}x =\frac{- \left(a + k -\frac{1}{k}\right) - \sqrt{a + k -\frac{1}{k})^2 + 4 a k}}{2} &gt; - a\end{aligned}

Then

(ak+1k) 2(a+k1k) 2>4ak\begin{aligned}(a - k + \frac{1}{k})^2 - (a + k -\frac{1}{k})^2 &gt; \frac{4 a}{k}\end{aligned}

Then

4a(k1k)>4ak\begin{aligned}- 4 a\left(k - \frac{1}{k}\right)&gt; \frac{4 a}{k}\end{aligned}

Then k<0k &lt; 0, a contradiction